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Preface

These notes are an expanded version of the Wittemore Lectures given at
Yale in November 1988.1 The material presented in the four chapters is
more or less selfcontained. On the other hand, in the section at the end of
each chapter called 'Notes and comments,' it is assumed that the reader is
familiar with more advanced and sophisticated notions from the theory of
automorphic forms. Some of the material presented here overlaps with a
forthcoming book, 'Discrete groups, expanding graphs and invariant mea-
sures' by A. Lubotzky. The points of view, emphasis, and presentation in
that book and the present notes are sufficiently different that we decided
to keep the two works separate. The reader is encouraged to look at both
treatments of the material.

Acknowledgements:

The author would like to thank A. Lubotzky, C. McMullen, N. Pippenger,
J.P. Serre, and I. Vardi for their help in the preparation of this manuscript.

1The author would like to thank the Mathematics Department at Yale for their
warm hospitality.
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Introduction

Traditionally the theory of modular forms has been and still is, one of the
most powerful tools in number theory. Recently it has also been successfully
applied to resolve some long outstanding problems in seemingly unrelated
fields. Our aim in this book is to describe three such applications, develop-
ing along the way the necessary methods and material from the theory of
modular forms. Briefly, the problems we examine are the following:

(A) Ruziewicz's problem.
The problem is whether the Lebesgue measure A on the n-sphere Sn is

the unique rotationally invariant mean on L°°(Sn). To put it in another
context, an amenable topological group G is one which carries an invariant
mean on L°°(G). Uniqueness of such a mean is a difficult question and
seldom discussed. Actually, Ruziewicz in the 1920's posed the problem of
the uniqueness of rotationally invariant finitely additive measures defined
on Lebesgue sets on Sn. The relation between these problems is that an
invariant mean on L°°(Sn) is a finitely additive measure v which is moreover
absolutely continuous with respect to Lebesgue measure A, i.e., v(E) = 0
whenever X(E) = 0. Tarski [Tar] has remarked that it follows from the
Hausdorff-Banach-Tarski paradoxical decompositions of 5 n , n > 2, that
any rotationally invariant finitely additive measure on Sn, n > 2, must be
absolutely continuous with respect to A. Hence for n > 2 the invariant mean
and Ruziewicz problems are equivalent. In Chapter 2 it is shown that for
n = 1 the invariant mean A is not unique while for n > 2 it is. The key
in the solution for n > 2 is the construction of a remarkable finite set of
rotations in SO(n + 1). These rotations which are 'super ergodic' also have
other interesting applications. The analysis leads to a classification of those
compact connected Lie groups for which Haar measure is the unique mean.

(B) Ramanujan graphs.
In network theory, computer science, as well as in extremal graph theory,

a basic problem is that of explicitly constructing highly connected sparse
graphs. There are many measures of high connectivity. One which has
turned out to be most important is the expansion property [Al] (see Chapter
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2 Introduction

3). Briefly, a bipartite graph on |/| = n = \O\ vertices (where I stands
for inputs and O for outputs) and with kn edges (k fixed, n —> oo) is an
(n, k,c) expander if for every A C I with \A\ < n/2, we have that dA
(= outputs joined to A) satisfies \dA\ > c\A\. Here c > 1 is fixed and is
called the expansion coefficient. The problem is to construct a family of
(n, k, c) expanders, n —̂  oo, with c as large as possible. It is easy to see
from counting arguments (see Chapter 3) that expanders exist. However
the explicit construction of such graphs is much more difficult and will be
carried out in Chapter 3. We will give a simple explicit construction of such
families which are almost as good as the 'random' graph in its expansion
property. In some other respects these graphs are better than random and
even optimal. We call these graphs that we construct Ramanujan graphs.
We hope that after reading these notes the reader will agree with our choice
of name. One other property of these Ramanujan graphs is that they are
the first explicit examples of graphs of large girth (that is length of the
shortest closed circuit) and large chromatic number (the least number of
colors needed to color the vertices so that no two adjacent colors are the
same). Here too, the existence of such graphs (with large girth and large
chromatic number) was established by [Er] using counting arguments. This
result was one of the early achievements of the theory of 'random graphs'
[Bo2].

(C) Linnik Problem.

It is well known that n > 0 is a sum of three integer squares; n =
x2 + y2 + z2 iff n ^ 4a (86 - 1), (see Gaufi [Ga]). Moreover, if n is large
and is a sum of three squares then it can be represented as such in many
ways. Linnik studied the question of the distribution of (x, y, z) as above, for
large n. Developing elaborate and powerful methods [Lil] he proved under
certain hypotheses that the projection of these solutions onto the unit sphere
becomes equidistributed as n —• oo. In Chapter 4 an unconditional proof of
this fact is given. The key is a new estimate on Fourier coefficients of forms
of half integral weight.

In fact what links problems A,B, and C is that they are all reduced to the
problem of estimating the size of Fourier coefficients of modular forms. That
is, they are reduced to the Ramanujan conjectures and their generalizations.
Chapter 1 is devoted to developing the modular theory needed, as well as
a powerful basic technique, via exponential sums, for estimating Fourier
coefficients. We also develop some results on cancellations due to the sign of
Kloosterman sums (see Theorem A.2.1 in Appendix 1.2 of Chapter 1) which
gives progress towards the Linnik-Selberg conjecture, see 1.5.6.
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Introduction 3

Notes and historical comments

(A) For n = 1 the non-uniqueness of the invariant mean is due to Granierer
[Gr] and Rudin [Ru]. The uniqueness for n > 4 is due to Margulis [Mai] and
Sullivan [Su]. The key to their solution being the use of Kazhdan's groups
with 'property T' [Ka]. This method works only for n > 4. Drinfeld [Dr]
using the adelic theory of automorphic forms, Jacquet-Langlands theory, as
well as the solution to the Ramanujan conjectures due to Deligne [De], settled
the remaining n = 2 and n = 3 cases, again showing the mean to be unique.
Our proof of the uniqueness for n > 2 in Chapter 2 is new. For n = 2 it is
based on the theory of Hecke operators on L2(S2) developed in Lubotzky-
Phillips-Sarnak [LPS1]. The solution presented also has the advantage of
being effective and explicit in its construction of the crucial e-good sets of
rotations. In fact the construction is optimal and these rotations may be
used to give optimally equidistributed sets of rotations, see the discussion at
the end of Chapter 2.

(B) The first explicit construction of an expanding family of graphs is due
to Margulis [Ma2], though his construction does not yield an expansion
coefficient. Many related constructions followed and the work of Alon-
Millman [AM] and Alon [Al] crystallized the relation of expanders to eigen-
values of the adjacency matrix. The graphs presented in Chapter 3 are
due to Lubotzky-Phillips-Sarnak [LPS2,LPS3]. They give the best ex-
plicit expanders known and are also optimal in related aspects. Margulis
[Ma3,Ma4] has independently discovered similar constructions. For applica-
tions of expander graphs to nonblocking networks and to constructions of
super-concentrators see Pippenger [Pil].

(C) The unconditional solution to the Linnik problem and especially the
estimation of Fourier coefficients of forms of 1/2-integral weight is due to
Iwaniec [Iw2]. We will follow his method closely. The corresponding result
for indefinite forms, the distribution of reduced binary quadratic forms and
the corresponding estimation of Fourier coefficients of half integral weight
Maafi forms was recently done by Duke [Du].

The basic method of estimating Fourier coefficients exploited in these notes
is due to Kloosterman [Kl] and Petersson [Pe]. Selberg [Se] has given an
insightful discussion of this and other methods. Theorem A.2.1 which gives
the cancellation in signs of Kloosterman sums is due to Kuznietsov [Ku].
The simple proof given here is due to Goldfeld and Sarnak [GS].
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Chapter 1

Modular Forms

1.1 Introduction
Ramanujan in his paper [Rl] made two deep conjectures about the coeffi-
cients r(n) of the function A

A(q)=qf[(l-qn)u = f^r(n)qn. (1.1.1)
n=l n=l

The first was the multiplicativity of the coefficients

r(rnn) = r(ra) r(n) if (n, m) = 1,

the second an estimate
(1.1.2)

where d(n) is the number of divisors of n,

i . (1.1.3)
d\n

The first was proved by Mordell [Mo] and marked the beginning of Hecke's
theory of Hecke operators [H]. The second was proved by Deligne [De] and
is one of the crowning achievements of mathematics. It is interesting to
note that Ramanujan was interested in the bound (1.1.2) and related ones
because r(n) and related quantities appear as remainder terms in certain
asymptotics. For example, if r2S(n) is the number of representations of n as
a sum of 2s squares then he notes that

r2s(n) = 62s(n) + e2s(n), (1.1.4)

where S2S(n) is an arithmetical function involving sums over divisors of n
and €2s(n) is the remainder. For s > 2 the order of magnitude of 62S(n) is
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Chapter 1. Modular Forms

ns *, while the analog of Conjecture (1.1.2) (for s = 12 the e(n) is essentially
r(n)) is

e2s(n) = 0e ( n ^ * 6 ) for e > 0. (1.1.5)

That is, 828{n) is a strikingly good approximation to r2S(n). For example, if
5 = 2 then, as Jacobi showed, the remainder term is zero. In fact

r4(ra) = 64(n) = 8 ^ d. (1.1.6)
d\n
4\d

Jacobi's proof of (1.1.6) used theta functions. We now develop the theory of
theta functions and modular forms, which will provide the natural setting
and explanation of the above considerations of Ramanujan.

1.2 Modular forms of integral weight

Let H = {z\ Im (z) > 0} denote the upper half plane. The group

a b
a,b,c,deR,

acts on H by linear fractional transformations z

c d

(cz+d)'

€5L(2,R) a, 6, c, d e Z

be the usual modular group. F(l) is a discrete subgroup of 5L(2,R) and
acts discontinuously on H. A fundamental domain for this action is the
familiar region T (see Figure 1.1). Thus F(1)\H has one cusp, viz. oo, with
corresponding stabilizer of oo being the subgroup F ^ of F(l)

r^ = ) eSL(2,R) n e z j . (1.2.1)

The Riemann surface F(1)\H has genus zero as is easily checked. We begin
with the definition of holomorphic modular forms for F(l) of even integral
weight k.

Definition 1.2.1. A holomorphic modular form of weight k (an even inte-
ger) for F(l) is a holomorphic function on H satisfying

(i) / ( z) = (cz + d)kf(z) = ( * *)
\ c d )

(ii) f(z) is bounded in the cusp of F(1)\H.
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1.2. Modular forms of integral weight

- 1 - V 2 1/2 1

Figure 1.1: Fundamental region T for F(l)

The second condition asserts that / is holomorphic 'at oo\ The local variable
at oo is q = e27™2, and since f(z + l) = f(z),f has a Fourier development

/(«)= £ °»«B- (1.2.2)

Condition (ii) ensures that an = 0 for n < 0, that is / is holomorphic in
\q\ < 1. The numbers an in (1.2.2) are called the Fourier coefficients of /
(at the cusps at oo). If w = jz then

dw
or = (cz + d) dz

Hence a modular form of weight k for F(l) corresponds to a meromorphic
differential of weight k/2 on F(1)\H, that is f(z) (dz)k/2 is such a differential
(it may have a pole at oo in the variable q). With this remark we can easily
compute the dimension of the finite dimensional space of modular forms of
weight k for F(l) by appealing to the Riemann-Roch theorem. We will not
need (for the most part) the exact dimension, it will suffice to note that in
this situation and the more general ones that follow, that the space of forms
is finite dimensional. This follows by considering Jd:F(ff/f){z)dz which,
from the transformation rules of (i) is independent of / .

Definition 1.2.2. A modular form for F(l) is called a cusp form if the
coefficient CLQ in (1.2.2) is zero.

https:/www.cambridge.org/core/terms
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8 Chapter 1. Modular Forms

Clearly the space of cusp forms of weight k is a subspace of the modular
forms of weight k and corresponds to those / ' s which vanish at oo. An
example of a cusp form of weight k = 12 for F(l) is the function
q = e2™, of (1.1.1), i.e.,

n = l

(we use the notation e(z) = e2niz for z G C). That A(z) is a modular form
is by no means obvious. We prove this in the Appendix to this chapter. We
note that clearly A(z + 1) = A{z) and since (J \) and ( ^ Q ) generate F(l)
it is sufficient to show that

A(-l/z) = z12A(z). (1.2.3)

We can now state the Ramanujan conjectures for holomorphic modular
forms of even integral weight on F(l).

Ramanujan Conjectures 1.2.3. Let f(z) be a cusp form of weight k for
r ( l ) then

an = O€(n(fc-1)/2+€) for all e > 0,

where the an's are the Fourier coefficients of f.

For the function A(z) this agrees with (1.1.2) (at least as far as the expo-
nent) since d(n) = Oe(n

e).
Our assumption that / be a cusp form for F(l) is too restrictive. Forms

invariant by certain subgroups of F(l) will play a central role in the later
chapters. Let F(AT) denote the principal congruence subgroup (of F(l)) of
level N, where N > 1 is an integer. It is defined by

Any subgroup T(N) C F C F(l) is called a congruence subgroup. Of special
interest is TQ(N) defined by

• { (
1

, ) GF(1) N\C\> . (1.2.5)
c d ' l

If F is a congruence subgroup of F(l) of index m then clearly a fundamental
domain for F may be taken as

https:/www.cambridge.org/core/terms
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1.2. Modular forms of integral weight 9

for suitable 7, G F(l). The set of rationals in R will break up under the
action of F on R into say r equivalence classes of cusps p i , . . . ,p r . That is,
for i 7̂  j , 7Pi ^ pj for 7 G F and any p G RU {00} is of the form p = 7Pj
for some 7 G F. We will always take p\ = 00. Since F(l) has only one cusp,
there is, for each pj, a 7̂  G F(l) such that jjPj = 00. To define a modular
form of weight k for F we require, as before, that / be holomorphic on H
and

f (^ ~\ — (ry 1 rf\k f(~\ *, c: p
J \ 1 ~ / — \^<> 1 w) J \*>) 5 / c 1 •

Also we need to ensure that f(z) is holomorphic at each cusp. To examine
/ in the cusp p^, it is convenient to introduce a local variable at pj by
mapping pj 1—• 00 with the 77 above. If w = jjZ then in the variable iu, / is
transformed into the form

F(w) = f(~i~lw) (^\ . (1.2.6)

F(w) is a form of weight k for Tj = 7JF7"1 C F(l). We say that f(z) is
holomorphic at pj if F(ty) is holomorphic at 00, the Fourier coefficients of
/ at pj are those of F at 00. With respect to this, notice that (Fj)^ C
{ (en) I ^ ^ Z} is of finite index, so that the Fourier development of F is of
the form

(1.2.7)
71=0

for some integer M > 1.

Definition 1.2.4. A modular function of weight k for F a congruence
subgroup of F(l), is a holomorphic function /(z) on H satisfying

(0

(ii) f(z) is holomorphic at each cusp pj

(in) f is a cusp form if its zeroth Fourier coefficient is zero in each cusp.

We denote the space of modular forms (cusp forms) of weight k for F by

), (5fc(F)). Notice that a modular form for F is automatically one for
r ' c F and similarly for cusp forms. We can now state the more general
Ramanujan conjectures.

Ramanujan's Conjectures 1.2.5. Let f(z) be a holomorphic cusp forms
of weight k for F (a congruence subgroup) then

an = O6(n(fc-1)/2+c) for ail e > 0 .

Here the an are the Fourier coefficients of f at any cusp.
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10 Chapter 1. Modular Forms

In this situation we need only check the Ramanujan conjecture for the
cusp at oo, since if f(z) is a cusp form for T(N) then f(jjz) is also one for
r(7V), where ^ G T(l).

To end this paragraph we make some comments about forms of odd weight
A:. Though we will not make any use of these forms here they are of great
interest in number theory [DS] and in Physics [Sax]. The condition f{^z) =
(cz + d)kf(z), when k is odd would be impossible if 7 = (jj"!_i)- Hence,
for odd k, either we must assume that (^L?) ^ T or that we have an odd
character x of F into {z\ \z\ = 1}, i.e., x(—/) = —1. Considering only
congruence groups, we also assume that ker x is a congruence subgroup. A
modular form of odd weight k is then as before a holomorphic function is
H, satisfying

Such a form with, say k = 1, corresponds to a tensor f(z) (dz)1/2 on the
surface T\H, that is a holomorphic spinor [Sax].

1.3 Theta functions and modular forms of 1/2-
integral weight

One of the most important methods and certainly the one most relevant to
our applications, for constructing modular forms is via theta functions. We
begin with the classical theta function

oo

m= — oo

This series is absolutely convergent for Im (z) > 0 and it clearly satisfies

(<) 6{z + 2)=~6{z).

A second transformation rule for 6{z) under z i-> —l/z is derived from
the Poisson summation formula and is the basic ingredient in verifying the
transformation properties of any type of theta function.

Poisson summation 1.3.1. Let f be a Schwartz class function on Rn then

where

https:/www.cambridge.org/core/terms
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Theta functions and modular forms 11

In particular, since the Fourier transform of e"71"x is e"71^ we have

e £
V n = —

Hence

(M) 0(-1/Z) = V^eiz).

(Here and elsewhere y/~ will be the usual branch, positive on R + . ) This
gives us the second transformation rule for 0(z) and hence implicitly also
the transformation of 0 under the group generated by (J2) and (_°1

1
0)- This

is not explicit enough for our purposes . Let (*d) € SL(2, Z), a = 0 (mod 2),
d = 0 (mod 2); we examine the behavior of 0 under (£j). Let c > 0 (c < 0 is
dealt with similarly);

c(cz + (

m (mode) £=—oo

= {ic)-ll2{cz + d)1'2 Y\ ei*m*a/C

m (mode) i/= —oo

where we have applied Poisson summation to the inner sum. Now

V"^ _ V ^ iirm2a/c+2nimi>/c

m (mod c)

o2( am2 + mv\
[ ) where a 2 = a.

m (mod c)

Since (2a) d = 1 (mod c) and also c is odd, we can change variable

m = ra,

where here and elsewhere a a = 1 (mode). The last then becomes

E V—> / cf(r •+• r z/) \ Y~^ fol(v-\-

r (mode) r (mode)

i.e.,
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12 Chapter 1. Modular Forms

where

(^) (1.3.3)
r (mod c) ^ ^

Substituting for ]T in (1.3.2) gives

(1-3.4)

Now /? is a standard Gaufi sum and may be explicitly evaluated [Dal]

^ J V ^ / j i i V 1 ^ ifJV = 3(mod4)

Thus putting — l/z for z in (1.3.4) and using this evaluation of the GauB
sum yields

= (jf) e-,1 (cz + d)1/2 «(*) (1.3.5)

for any 7 G SL(2, Z) with c = 0 (mod 2), 6 = 0 (mod 2), where ed = 1
or z depending on whether d = 1 or 3 (mod4), and the symbol (-) is the
Legendre symbol extended as follows, see Shimura [Sh]; for b odd

(t) ( £ ) = 0 if (a, b) / I ,

(ii) if 6 is an odd prime then (f) is the usual Legendre symbol,

(in) b > 0 then ( | ) is a character (mod 6),

(iv) a ^ 0, ( — j is a character (mod 4a)

(-^ J = 1 if a > 0 and is - 1 if a < 0, (^ J = 1.

If we set 6 = 6(2 z) = Yl e(m2z) then we conclude from (1.3.5):
—00

Proposition 1.3.2.

0(7*) = i(7, *)«(*) for7er0(4)

where

^ is our fundamental modular form of 1/2 integral weight, in fact its
multiplier .7(7,2) is used to define these forms.
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Theta functions and modular forms 13

Definition 1.3.3. Let 4\N. A modular form f(z) of weight k (k a 1/2
integer) for T0(N) is a holomorphic function f(z) on H satisfying

(0 Hiz) = (j(l,z))2kf(z) for7er0(7V),
(ii) f(z) is holomorphic at each cusp.

This definition is consistent with the previous ones when k is even. Again
let .Mfc(r), Sfc(r), denote the spaces of modular and cusp forms of weight
k (they are clearly finite dimensional). It is also convenient to allow more
generally forms transforming by

= X(7) (i(7, z))2k f{z), 7 e T0(N),

where x{*d) = x(d) is a multiplicative character (mod TV).

The above construction of 6{z) is a special case of the following construc-
tion due to Schoenberg [Sc] and Pfetzer [Pf]. We follow Shimura's treatment
[Sh].

Let A be an n x n positive definite integral matrix. Let N be an integer
such that N A-1 is also integral. P(x) denotes a spherical harmonic relative
to A, that is, a homogeneous polynomial of degree v > 0 for which

where [ai;7-] =A~l. For h G Z n let

9(z,h,N)= £ P{rn)e[{tmA™)z). (1.3.7)
m=h (mod N) ^ ^m=h (mod N)

Clearly this series converges and defines a holomorphic function on H. Using
the method described for 6{z) one can show (see Shimura [Sh]) that:

(0 0(-l/z,h,N) = (-0"
k (mod AT)

A k=0 (mod N)

where D = det A and k = n + 2v.

(ii) 0(z + 2, ft, TV) = e ( ' " ' ' " 1 0(z, ft, JV).

The second statement is obvious, the first follows from the Poisson summa-
tion.
(Hi)

abthAh\ / de tA\ (2c\n
 n /
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14 Chapter 1. Modular Forms

for 7 = (**) e SX(2, Z) and b = 0 (mod2), c = 0 (mod2iV).

The 0(z,h,N) above clearly give us an abundance of modular forms. We
consider some examples.

Example 1: With n = 1, N = 1, P(ra) = m", i/ = 0,1, then

oo

m"e(|m|2z/2),

which gives our old ^-function. More generally, if v = 1 and tp is the Dirichlet
character (mod 4) with V>(~1) = ~1> then from the above

ip(m)me(m2z) (1.3.8)

is a cusp form for To(8) of weight 3/2.

Example 2: If
/ 1 0 \

\ 0 1 /

is the nxn identity matrix, N = 1 and P is a spherical harmonic of degree

P(m) e(|m|2z/2)

satisfies the transformation rule {in) above. Hence setting

6p(z) = const. 0p(2z) = ^ -P(m)e(|m|2z)

(1.3.9)

:=0 \|m|2=t

we find that
p (?1±±\ = 0(7)z))k0p{z)

y CZ ~T~ Q> J

Moreover (i) above shows that 0p is holomorphic at every cusp and if v > 0
it is clear from the definition of 6 and (i) above that 6p is a cusp form. That
is, we have

n0P e 5fe(r0(4)) for v > 1, fc = - +1/

while for P(x) = 1, 0t e Mn/2(r0(4)).
(1.3.11)
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Theta functions and modular forms 15

Note that

i/=0

using the notation of (1.1.4).

Example 3: Let A be an integral 4 x 4 positive matrix as above. Then
Q(x) = lx Ax is a quaternary form. Let

If N A~x is integral then the above considerations especially (Hi) above show
that

Yl J£Q(v)e(vz) (1.3.12)

is in M2(T(N)).

We now formulate the Ramanujan conjectures for 1/2-integral weight.
Some care must be exercised in the formulation since for example, the cusp
form 6(z,%l)) in (1.3.8) for To(8) of weight 3/2 has

av = for v — m2 .

This is clearly not O (v~2~+e) for e < 1/4. Thus 0(z,Tp) fails to satisfy the
Ramanujan bound. Hence we must either keep away from such ^-functions
of one variable or, which can be shown to be the same thing (see the notes
to Chapter 4), assume that n is square free (or has a fixed square factor).

Ramanujan Conjecture for half integral weight 1.3.4. Let f(z) be a
holomorphic cusp form of weight k (where k is half an odd integer k > 3/2)
forTo(N);if

oo

/(*) =
n=l

then for square free n, an = Oe(n^~1^/2+e) for e > 0.

We will return to this conjecture later and in Chapter 4 make some
progress towards its proof. Suffice it to say here that unlike the even weight
case, Conjecture 1.3.4 is far from being completely solved at present.

We end this section by pointing out what will be termed the 'trivial' bound
for the Fourier coefficients of a cusp form.

Proposition 1.3.5. Let f e Sfc(F) with Fourier coefficients an then

an =

https:/www.cambridge.org/core/terms
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16 Chapter 1. Modular Forms

Proof: Since y(z) = lm(z) satisfies 2/(7 z) = y(z)/\cz + d\2 we see that

F{z) = \f{z)\yk'2

is F invariant. Also, since / vanishes at each cusp, it follows that F(z) is
bounded on H, say |JP(^)| < M. Now

ny / e(-nx)f(x + iy)dx.
Jo

Hence \an\ < Me2nny y~k/2. Choosing y = \jn yields the claim.

/o

The Ramanujan conjectures give the strongest possible bound for an since
it can be shown (see Selberg [Se]) that

n<X

with c> 0.
Any bound on the Fourier coefficients beyond the trivial one is significant

since it typically leads to a solution of the problem at hand, even if not the
optimal one. A notable exception to the last is the Linnik problem as is
explained in Chapter 4. In Section 1.5 we will present a non-trivial bound
of O^n*/2-1/4*6) for e > 0 for the coefficients.

1.4 Eisenstein series

In addition to theta series, Eisenstein series also produce modular forms
though strictly noncuspidal ones. Moreover this construction and the forms
so produced are well understood.

Assume first that k > 2. For each pj of F\H we define an Eisenstein
series E^\z). We do this first for pi = 00; the other Eisenstein series are
constructed using their local variable in the same way. We assume further
(without loss of generality) that

Define
Ei°°\z)= £ (j(7,z))-2k. (1.4.2)

The first issue is that of convergence. This is best understood through the
'spectral' Eisenstein series, for Re (s) > 1
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17

Figure 1.2: Non-Euclidian ball of radius 6

Let ZQ € J T with B(zo,6) C TT where JB(̂ o?̂ ) is a non-Euclidian ball
radius 6 about 20 (see Figure 1.2). For s > 1 the series in (1.4.3) converges
absolutely and

c(s)
E(zo,s)< O(ya

0). (1.4.4)
vo\(B(z0,6))

To see this note that for zf
0 with y$ < 1 (say) then for some C, y'o < Cy, for

z € B(ZQ,8), and 6 small. Hence for real s

5; dxdy

y2

where dxdy/y2 is the area element of the hyperbolic plane. The sets
i?(7Zo,£), 7 € roo\r are disjoint and all lie in the intersection {z\ — 1/2 <
Re (z) < 1/2} fl {z\ Im (z) < T}. Hence for s > 1

vol(B) /7
JQ JO

3dxdy

The above holds for yo < 1. In general we get at most an extra term coming
from 7 = identity giving: For Re (s) > 1

C(a)
(1.4.5)

' - ™l(B(zo,6)) ' » '

where a = Re (s) and J3(zo, 6) C TT- Returning to Ek we have

yk'2\Ef{z)\ < V |cz + d|-fc »*/2 = S(a, k/2). (1.4.6)

https:/www.cambridge.org/core/terms
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18 Chapter 1. Modular Forms

Hence E^°\z) converges absolutely for k > 2. It follows that E^(z)

is holomorphic in H and is clearly modular as far as the transformation

property goes. In fact E^ € A4k(T) as the following shows:

Proposition 4.1. Assume ("̂ 1_J) € F (if not, replace 2 by 1 below);

lim E^\z) = 2
Z-+OO

and Efr(z) vanishes at the other cusps p2, • • • ,Pr- Similarly E^j\z) has
value 2 at pj and vanishes at the other cusps.

Proof: We prove it for E^ (z). The absolutely convergent Eisenstein series
will (except for the terms involving the cosets F ^ / , F ^ — / ) ) tend to zero
as z —> oo. It follows that E^°\oo) = 2. Next we examine the behavior
of Efr(z) as z —• Pj, another cusp. Suppose for definiteness that pj = 0.
From (1.4.6) and (1.4.5) we have

In terms of the local variables, we have

\F(z)\ = \z~k Ek(-l/z)\ < \z\~k yk/2+l ^ 0 as z -> oc since k > 2.

This proves the Proposition. D

Corollary 1.4.2. The Eisenstein series Ej^3 (z), j = 1 , . . . , r span an ?—
dimensional subspace of Mk{T). Moreover, each g G «Mfc(F) has a unique
representation

g = e + h

where e is in the space spanned by the Eisenstein series and h € 5fc(F) (i.e.,
a cusp form).

Proof: Follows directly from the Proposition. •

Fourier development of (1.4.3). The Fourier coefficients of the Eisenstein
series defined above are easily computed. What we find is that the nth
coefficient is of the form: a sum over the divisors d of n, of powers of d -
'a divisor sum'. In particular, the coefficients are elementary arithmetical
functions of n.

Consider for example the case of TQ(N) and E^(z). If

7er00\r0(Jv) m=o
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1.4. Eisenstein series 19

then

pi pia+l
an = I Ek(z)e(—nz)dz (more precisely / ...dz with a > 0)

Jo Jia

= 2 e(-nz)dz + 2
Jo E

c>0

e(—nz)dz

c > 0

eZ

(cz -f d)~k e(—nz)dz

oo

c=0 (mod N)
c>0

d(modc)
(d,c)=l

c=0 (mod N)
c>0

(d,c)=l

Therefore

c=0 (mod N)
c>0

d (mod c)
(d,c)=l
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20 Chapter 1. Modular Forms

For k half an odd integer the exponential sum in (1.4.7) is a little more
complicated and will be dealt with in Chapter 4 together with related sums.
For k even the sum in (1.4.7) is

c=0 (mod N) d (mod c)
c>0 (d,c)=l

The inner sum is easily evaluated as was done by Ramanujan [R2] and gives

c=0(modJV) d\c
00 d|n

where // is the Mobius function. For example if N = 1 this gives

where * is independent of n. The general case is not much more complicated.
It is always a sum of divisors of n, i.e., of the type

F(d) where F is periodic (mod N). (1.4.11)
d\n

Remarks 1.4.4.
(A) By an indentical calculation one can develop the spectral Eisenstein
series (1.4.3) in a Fourier series. For example if F = F(l) then

S " V 2 <7i-2«(") Ks_1/2(2imy) cos(27rnx)(,1.4.12)
^ ^ ' n=l

where

Ku(t) = / e~* CO8hu cosh{vu)du.

From this representation and the well known analytic continuation of the
Riemann zeta function, it is clear that E(z, s) has a meromorphic continua-
tion to the plane. We will use (1.4.12) in Appendix 1.1 to show that A(z)
i& modular.
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1.4. Eisenstein series 21

(B) The analysis of Ek(z) above works for k > 2. For k = 2 we need to
modify the construction to overcome the convergence difficulty. Introduce
for s > 0

Ek(z,8)=

One can show that lims^oE2(z,s) = #2(2,0) exists and yields a function
which transforms correctly but which is not quite holomorphic. In fact
its zeroth coefficients have a simple non holomorphic part. Similarly one
constructs Erj1 (z,0) for each cusp pj, j = 1,. . . ,r, of F. Any combination
of these E^ (z,0) annihilating the non holomorphic term gives an element
of A^2(F). In this way one gets an r — 1 dimensional space ^ (F ) of A ^ F ) .
The Fourier coefficients of a member e of ̂ (F ) are again divisor sums. Note
also that an arbitrary g G A^2(F) gives a meromorphic differential g(z)dz
over F \H (compactified). Since the sum of the residues of g(z)dz over F \H
is zero it follows that the values of g(z) at p i , . . . ,p r satisfy a linear relation.
So everything works out as before. The Eisenstein series span an r — 1
dimensional subspace ^ (F ) of A^CO and every g G -M2(F) is uniquely
expressible as

g = e + h (1.4.13)

with e £ £2(F), h € 6*2 (F). For more details concerning Eisenstein series of
weight 2, see [Sc2].

(C) We can now explain Ramanujan's observation (1.1.4). We have seen in
(1.3.11) that for 5 > 4

00

Wz) = ̂ 2rs(n)e(nz) G Ms/2(T0(A)).

Hence from the considerations of Eisenstein series

Os(z) = eB(z) + h3(z) (1.4.14)

where e3 G £s/2(ro(4)) is an Eisenstein series, hs G 5f
s/2(Fo(4)).

Equating Fourier coefficients gives

rs(n) =6s(n) + hs(n) (1.4.15)

where 6s(n) is the coefficient of some Eisenstein series and is therefore a
divisor sum (or singular series as it is called in the 'circle method' [Da2])
while hs(n) by the Ramanujan conjecture on cusp forms should satisfy

For small values of s, say 5 = 4, there are no cusp forms, i.e., 52(F0(4)) =
{0}. For this case, 5 = 4, F0(4) (compactified) is easily seen to be of
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22 Chapter 1. Modular Forms

genus zero so that the space of holomorphic Abelian differentials f(z)dz
on Fo(4)\H is zero dimensional. A cusp form / G 52(Fo(4)) gives rise to
such a differential, hence 52(ro(4)) = {0}. Consequently

u{n) = 54(n).

A straightforward calculation with Eisenstein series gives

d\n

viz. Jacobi's result (1.1.6).

1.5 Poincare series

As we have seen, Eisenstein series never furnish cusp forms. To obtain cusp
forms by a similar construction we use a variation of Eisenstein series known
as Poincare series. Consider the group T0(N) (for T(N) the analysis is the
same) where, whenever we are dealing with 1/2 odd integer weight, 4|iV.
The Poincare series at 'oo', Pm(2, k) is defined by

(1.5.1)

Here m > 0 is an integer. Actually m = 0 is just the Eisenstein series
so for this section we assume that m > 0. Clearly the Poincare series are
dominated by the Eisenstein series and so for k > 2, which we assume here
for simplicity, the above series converges absolutely. As before Pm(z,k)
vanishes at all cusps not equivalent to oo. However, it also vanishes at oo
since m > 0. Hence Pm(z,k) G Sfc(F) for each m > 1 (it may well vanish
identically). The Pm(z, &), m > 1 span the space of cusp forms Sfc(F) as we
now demonstrate.

1.5.1. Petersson inner product.

So far we have viewed 5fc(F) only as a linear space. It can be given a
natural inner product called the Petersson inner product. For f,g e Sfc(F)

^ (1-5.2)

r \H

The function ykf(z) g(z) is T-invaxiant and rapidly decreasing in the cusps,
hence the integral is well defined and convergent. The reason that this inner
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1.5. Poincare series 23

product is natural is that all interesting linear operators on 5fc(F) (see for
example the Hecke operators later on) are Hermitian (or at least normal)
relative to this inner product.

The following is a basic calculation: Let / € Sfc(F) then

(Pm,f)= f Pm{z)f{z)y
dxdy

(1.5.3)

o Jo

(47rm)fc

where f(z) = ^2^=i fln e(nz) and F is the gamma function. It follows that
if (Pm, / ) = 0 for all m then am = 0 for all ra, i.e., / = 0. Hence the Pm 's
span the finite dimensional space 5fc(F).

It follows that for our main purpose of estimating Fourier coefficients of
cusp forms it suffices to do so for the Poincare series Pm. Let us see what this
involves. We can compute the Fourier development of these Poincare series,
the calculation being very similar to the one involving Eisenstein series.

/ Pm(z,k)e(-nz)dz
o

f E U^z))-2ke(m1z)e(-nz)dz

f1

= 2 e(mz) e(-nz)dz +
JO

= 2<5m,n+

-2k / /i \ \
e ( m 7 I ^ ^ ) z — nz ) dz

/•OO

/ j(7> z)~2ke(m^ z - nz)dz
J — oo

a 1
NOW 7 2 = ; SO

c c{cz + a)
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24 Chapter 1. Modular Forms

= 26
m,n

(d,c)=l

= 2Sm,n + 2

£ A
d (mod c)

= 28m,n + 2

£
d (mod c)
(d,c)=l

7er

c = 0

'ma

c = 0

(5

c>0
oo\r/roo
f / r \2 / fc

1 — 1

OO
(mod TV)

") £d2k 1

(mod TV)
OO

ft?'

c=0 (mod TV)
OO

c~k

fcs2k

c~k

. / m i
e f —

c~k

-m

k

d (mod c)

2k -2k -m

So

c=0 (mod TV)
c>0

where we have used the representation for the Bessel function

oo+d

1w
l ))dw

—oo+ci

(fc-l)/2
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1.5. Poincare series 25

while Pm(z, k) = £ ~ = 1 Pm(n) e(nz) and

__, N v-^ fc\2k _2k fmd + nd\ . c _ ,
K(m,n,c)= 22 (d) £d V ) * ( )

d(modc) ^ '
(d,c)=l

((1.5.4) is of course an algebraist's nightmare; one expresses a good integer
like T(TI) as an infinite series with Bessel functions!)

To continue we must distinguish between the fundamentally different sums
in (1.5.5) when k is even and when k is 1/2 an odd integer.

1.5.2. k even.

In this case the exponential sum K(m, n, c) above is a so-called Klooster-
man sum

,n,c) = K(n,m,c)= ^ e (md + nd\ . (1.5.6)
d(modc) V C /

The Kloosterman sums satisfy an obvious property which follows from the
Chinese remainder theorem. If (ci,C2) = 1 then

K(u,v,c\C2) = K(u,vcl,ci) K(u,vc1,C2), (1.5.6')

K(u,v,pk) for k > 2 is easily (elementarily) seen to satisfy

\K(u,v,pk)\<2pk/2. (1.5.7)

If we combine this with the important Weil bound [Wei], that is for p prime
and (ra, n,p) = 1;

/ I \ \

\-nx\
1 <2^,

x(modp) \ ^ /

we see that for m fixed

K(m, n, c) = Oe(c1/2+e). (1.5.9)

Using this bound in the series (1.5.4) together with the bound for the Bessel
function [Wa]

Jk-i(x) <min jzfc-\-^= j (1.5.10)

we conclude
Pm(n) = O^n*/ 2 - 1 / 4 ^) . (1.5.11)
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26 Chapter 1. Modular Forms

We have proven the following (after appropriate extensions to T(N) and
ib = 2).

Proposition 1.5.3. Let k be an even positive integer, if f e Sfc(r) with T
a congruence subgroup then the Fourier coefficients an of f satisfy

This is a first and non-trivial step toward the Ramanujan conjectures
1.2.5. Though it falls short it suffices for many applications and in more
generality such as automorphic forms over a number field it yields the best
known results; see the notes at the end of Chapter 1.

1.5.4. k half an odd integer.

This time

K(m,n,c)= £ (£ ) e J i e (=^V (1.5.12)

This sum is essentially a Salie sum, see Chapter 4. We will study it in
detail there. Here, however, we merely note that again it factorizes and the
estimate

\K(m, n,p)\ < 2y/p, for p a prime

is in this case elementary (see Chapter 4). We conclude, as before

Proposition 1.5.5. Let k be half an odd integer and f e Sk(T0(N)), (4\N),
then

In view of Example (1.3.8) we see that this is, in fact, the best estimate
one can claim here without restricting to n to be square free or avoiding the
0-series of one variable.

Clearly if one is to improve on these bounds one needs to exploit the
cancellation that occurs in the series (1.5.4) that comes form the sign changes
in K(m,n,c). This is a difficult problem. In this direction Linnik [Li2] and
Selberg [Se] have conjectured

Conjecture 1.5.6. (Linnik-Selberg)

0<c<x
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1.6. Hecke operators 27

This would imply Conjectures 1.2.5 and some progress in the direction of
Conjecture 1.5.6 is described in Appendix 1.2. The truth of 1.5.6 has many
other implications in number theory, see Linnik [Li2].

The exploitation of this cancellation for the Salie sums is the subject
matter of Chapter 4.

Returning to Remark 1.4.4(c) we see that for s > 3;

rs(n) = 6s(n) + O^n9'*-1'**'). (1.5.13)

The singular series 6s(n) is of order ns/2~l (when 5 = 3 this is so only for
those n's representable as a sum of three squares) and so for s > 3, 6s(n)
is the main term. For s = 3 it is not, and this is the reason the Linnik
problem (C) of the Introduction is a difficult one. One needs to go beyond
the fc/2 - 1/4 barrier!

1.6 Hecke operators

We have discussed in some detail the second observation of Ramanujan viz.
(1.1.2). The first is explained by 'Hecke operators\

Quite generally if G is a group and T <G such that G acts on a space X
with F acting discontinuously on X, we can define certain Hecke operators
on L2(T\X). Let

COM (F)d= {g eG\A = g^Tg f)T has finite index in both F and g~lTg}.

Clearly COM (F), called the commensurator of F, is a subgroup of G con-
taining F. For each g G COM (F) define

Tg:L
2(T\X)-^L2{T\X)

as follows: Write

i.e., in right cosets, then

^2). (1.6.1)

Claim: F(x) e L2(T\X).

Indeed
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28 Chapter 1. Modular Forms

now 6jj = 6j6n(j) for some permutation n of F. Hence

3

for some fjbj G F. Thus

proving the claim.
Of course Tg is a trivial operator if g G F, but otherwise if COM (F) =g

F, Tg and especially its spectrum is interesting. The set of such Hecke
operators form an algebra which, for example, will commute with all G
invariant differential operators on X. In order that the spaces of certain
functions on T\X be finite dimensional, we usually need T\X to be compact
or at worst of finite volume. If G is compact then we can take F = {id.}
and every g G G is a commensurator. The elements of the algebra of such
Hecke operators will be of importance in Chapter 2 (primarily with X = S2,
G = 5O(3)).

When G = 5L(2, R) and F = F(iV), we obtain from the above construc-
tion the usual Hecke operators. We consider here only F = F(l) and will be
brief since no direct use of these operators will be made.

For F(l), G = GL(2,R), we have g = (J}J) G COM(F(1)). A simple cal-
culation shows that the corresponding Hecke operators on L2(F\5L(2,R))
are

k (modr)

Now one checks that a function / on H satisfies

/ (7 z) = (cz + d)kf(z) (k even integer)

iff F = yk/2 f(z), thought of on 5L(2, R), satisfies

(ii)

Here we identify H with SL(2, R)/K,
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1.6. Hecke operators 29

and
_ / 1 x \ f y1/2 0 \ / cos0 sin(9 \

^ ~ V 0 1 y V 0 y~1/2 ) \ -sin0 cos<9 )

is the usual Iwasawa factorization of g and z = x + zy.
Carrying out the identification we find that for functions on H satisfying

the action of Tn becomes

(1.6.2)

6(modd)

One can check that

(») Tnm = TnTm for(n,m) = l

(«) TpnTp = Tpn+l + p"1"1 Tpn-l , 72 > 1

(tit) / € M f c(r( l)) implies Tnf G A<fc(r(l))

Moreover if

f(Z) =
.71=0

then
oo

Tnf(z) = J2 bme(mz)
m—Q

with

\~^ ,fc-i fmn\

d\(n,m)

In particular, if T n / = A n / then

(iv) Anai = a{n).

It follows from (iv) that if / is an eigenfunction of all the Hecke operators
Tn then the Fourier coefficients of / inherit properties (i) and (ii).

Corollary 1.6.1. The coefficients r(n) of A(z) are multiplicative (i.e.,
r(mn) = r(m)r(n) if (n, m) = 1) and

r(p)r{pn) = T(pn+1) +p1 1T(p»-1) , n > 1.
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30 Chapter 1. Modular Forms

Proof: The result will certainly follow if 5i2(F(l)) is one dimensional
since, as is shown in Appendix 1.1, A(z) G 5i2(F(l)). This is because
Tn : 5i2(F(l)) —• 5i2(F(l)), and A would then have to be an eigenfunction
of all Hecke operators. To see that 5i2(F(l)) is one dimensional consider

h ! {f>/f)dz-
One finds by direct calculation that this equals 1. On the other hand it also
equals the number of zeroes of / . If dimSi2(r(l)) > 2 then there would be
a nonzero / € 5i2(F(l)) vanishing to order at least 2 at oo which would be
impossible in view of the above. •

We can now also explain the more precise bound

| r (n ) |<d(n)n n / 2

conjectured by Ramanujan. From Corollary 1.6.1 this would follow from
\r(p)\ < 2p n / 2 . Indeed from Corollary 1.6.1

nP } P sin(0)

where

' 2pn/2 *

Hence r(n) = O(nn /2 + e) iff \r(p)\ < 2 p n / 2 for primes p.

As was mentioned we have been very brief in Section 1.6. For a discussion
of Hecke operators see Ogg [O] or Serre [Ser].

Appendix 1.1

In this Appendix we prove that A(z) = Y^=i T{n)e(nz) is a cusp form of
weight 12 for F(l). More in fact is shown. Let

oo

rj(z) = ei7r*/12 J ] (1 - e(nz)). (A.1.1)
n=l

We show that rj(z) is a modular form of 1/2 integral weight.

Proposition A.1.1. The function F(z) = yl/2\r](z)\2 is F(l) invariant.

Once Proposition A.1.1 is established we will have

(i) 7](z + 1) =
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Secondly \rj(-l/z)\ = |z|1/2 \rj(z)\ hence

with \c\ = 1. Evaluating this at z = i gives

rj(t)=cei7r/4rj{i)

and since 77(2) ^ 0 for 2 G H as is clear from its definition in (A.I.I), we
conclude

Prom (z) and (M) it follows that

A(z) = (T?(Z))24

satisfies

(<)' A(z + l) = A(z)

(«)' A(-l/z) = z12A(z).

Since (Jj) and ( ^ J) generate F(l), the modularity of A follows. O

To prove Proposition A. 1.1 we will interpret the quantity F(z) in a way
which shows that it depends on the torus L\C, where L — {m + nz\ m,n G
Z}, and not on a basis for L.

Consider the series

E*(z, s) = ̂ ' |2j , where ^ ' means omit (ra, n) = (0,0).
m,n

(A.1.2)
This is a close relative of the spectral Eisenstein series (1.4.3). In fact from
the coset representatives

E*(z, s) has a nice geometric interpretation. Let M be the flat torus I/\R2,
L = {m + nz\m,n G Z}. The spectrum of A, the Laplacian on functions on
M, is easily determined. The eigenfunctions of A are

4>(x)=e((t,x))

where x = (zi,x2), t £ L* = {y € R2 | (y,£) € Z for all t € L}. The
corresponding eigenvalue is

-4n2\t\2, teL*.
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32 Chapter 1. Modular Forms

The spectral zeta function (M(S) for M is defined as follows

e*eL*

We see that CM(S) is essentially the Eisenstein series E*(z, s). The quantity
CM(0) is formally

hence

the 'regularized determinant' of A. Our proof of Proposition A.I.I is to
compute det' Az explicitly and in particular its Fourier development.

We have that E*(z,s) is a F(l) invariant function in z. Thus the 'height'
function h(z) = — log det' Az given by

h(z)=?-E*(z,s) (A.1.6)
8=0

is clearly a modular function for F(l). To compute the derivative at s = 0
we use the expansion (1.4.9)

Hence

dE*_

8=0

A 1/2 S
V * Y n S ~ V 2 CT(n) K(2Tmy) cos(27rnx).

OS 8=0
(X)

^2 1/2 cos(27rnx).
n = l

One can evaluate if-1/2(2/) as a more elementary function (this is an exercise
but its importance in Chapter 4, see 4.10, cannot be over emphasized)

so that the above becomes

dE"

n=l
ds

= C(0) logy+2C /(0)+C*(-l)y+2 Y, n-1 cri(n) e~2™y cos(27rnx).

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511895593.003
https:/www.cambridge.org/core


Appendix 1.2 33

Now, as is well known [GR], C(0) = -1 /2 , C'(0) = - | log(27r) and C*(l-«) =
C(s) so

dE*
ds o_n

n=l d\n

Also C*(2) = 7T-1 r(l)C(2) = f, hence

dE*
ds

= Re \ log 27rj/1/2ei'r/6 j j (1 — e(mz))2 i ,
*=° I L m=l JJ

i.e.,

-h(z) = log(2ny1'2\V(z)\2). (A.1.7)

We have seen that h(z) is modular and so the Proposition is proven. •

In fact we have shown that

det'Az = Cy1'2\r1(z)\2, (A.1.8)

where C is a constant independent of z.
This result has been rediscovered by physicists in the context of string

theory on a genus 1 Riemann surface [Pol]. The above proof of (A.1.8) goes
through the evaluation of — ^ E*(z, s) |g_0 in terms of 77(2), which is a result
due to Kronecker [Kr] known as Kronecker's first limit formula.

Appendix 1.2.

In this Appendix we show how the theory of automorphic forms may be
used to obtain some progress towards the Linnik-Selberg Conjecture 1.5.6.
As was pointed out originally by Linnik [Li2], Conjecture 1.5.6 has many ap-
plications to number theory (besides the Ramanujan conjectures) and in fact
this circle of ideas has led through the work of Deshouillers and Iwaniec [DI]
to some striking applications, see [Iwl]. Another application of cancellation
of 'Kloosterman sums' was found by Vardi [V], see notes to this Chapter.

Theorem A.2.1.

c<x °

The direct use of Weil's bound (1.5.8) leads to Oc(x1/2+e), so that Theo-
rem A.2.1 represents an exploitation of the cancellations due to the signs of
K(m, n, c) (actually this seems most certainly a true statement though, as
pointed out by Serre, it is not clear that K(m,n,c) = C^c1/2"60) for eo > 0
is impossible for m, n fixed, c —> oo).
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34 Chapter 1. Modular Forms

To prove Theorem A.2.1 we need to consider more general automorphic
forms on H than the ones that we have considered so far - these come about
by considering eigenfunctions of invariant differential operators.

Let A = y2 (J-^ + JU- J acting on functions on H. A is the Laplacian
for the hyperbolic metric ds = \dz\/y on H. Since G = SL(2, R) acting
on H by the usual linear fractional action acts as isometries, we first find
that A commutes with G. Hence we may consider its action on F invariant
functions, where F < G is a congruence group. The Laplacian A acting
on the space L2(F\H) is self adjoint and we may investigate its spectrum
(the inner product on F\H is the usual Petersson inner product (f,g) =
JrxHf(z)^(z)dxdy/y2).

For example the function y8 on H satisfies

Hence the series (A. 1.2) E*(z,s) correspondingly satisfies

AE* (z, s) + 5(1 - s) E* (z, s) = 0,

i.e., the E*(z,s) are F(l) invariant eigenfunctions of A. Prom the Fourier
expansion (1.4.9) it is apparent (by looking at the 'constant term', i.e., n = 0)
that they are not in L2(F(1)\H). Though this will not concern us here we
remark that these E*(z, s) may be used to furnish the 'continuous spectrum'
ofF(l)\H.

Returning to L2(F\H) we note that for <\> in the domain of A, we have

\V<t>\2dxdy>0./ t*^ [
r\H V2 i r \ H

Hence Ao = 0 is the smallest eigenvalue of A on T\H corresponding to the
constant function. We let

dxdy
Ai = inf ^-^ (A.2.2)

r\H

be the next smallest eigenvalue (actually if F\H is not compact, as we are
assuming, Ai need not be an 'eigenvalue' but it is the next point in the
spectrum of A).

Proposition A.2.2.

Xi(T(l)\H)>\.
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Figure 1.3: Triangle T C H

In fact Selberg [Se] has conjectured

Xi (r(iV)\H) > 1/4 for all N, (A.2.3)

and (A.2.3) may be viewed as a certain generalization of the Ramanujan
conjectures. We will return to this a little later.

To prove A.2.2, consider the general problem of bounding Â  (Q.) where
ft C H is a nice domain in H and Â  indicates the next-to-largest eigen-
value of A on Q with Neumann (or free) boundary conditions.

Proposition A.2t3. Let T be a triangle (hyperbolic of finite area) in H,
then A ^ C T ) ^ 1/4.

Proof: We prove this for compact triangles (see Figure 1.3). The proof for
a triangle with an angle of zero at some vertex is similar (though technically
a little more involved). We have \ff(T) = 0, corresponding to fo(z) =
const. Let X^(T) = Ai be the next largest eigenvalue with corresponding
eigenfunction (j)\{z). We have JT</>i(z)dfji(z) = 0. Hence </>i(z) has a nodal
set (i.e., the set where it vanishes) M, part of which must either run from
one edge to another as shown in Figure 1.4, or it looks like Figure 1.5. Note
that by reflecting ft in Figure 1.4.b about OA we get a region like the fi of
Figure 1.5.

Now consider the domain Q, shown. On integrating by parts we have

/
_ Jn

/n
We use geodesic polar coordinates (r, 8) in the Q, of Figure 1.4, from O (the
case 1.5 is a special case with angle a = 2TT). In these coordinates

ds2 = dr2 + (sinhr)2d02 .
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36 Chapter 1. Modular Forms

Figure 1.4.a.

Figure 1.4: Nodal sets

Figure 1.5: Another nodal set

We have 0 < 6 < a and 0 < r < R (we can extend (j) to be zero outside 0,
and call the resulting function u). Now

R rRfR d fR

— -r(u2) sinh rdr = — u2 sinh r + I u2 cosh rdr.
Jo dr o Jo

Hence

pR PR
/ u2 sinh rdr < I u2 cosh rdr

Jo Jo

rR d

= — —(u2)sinhrdr
Jo dr

fR
= — I 2uur sinh rdr

Jo

r /2

< 2 ( / v? sinh rdr I I / (u r)
2 sinh rdr I ,
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i.e.,
nR ,R
I u2 sinh rdr < 4 / (ur)

2 sinh rdr.
JO Jo

Hence

pa pR pa pR -, pa pi

/ / \Vu\2dfi(r) > / {ur)
2 sinhrdrdO > =- / /

JO JO JO JO ^ JO JO

which implies that

In particular the above shows that

• r JT ^ 1
inf -^ > -

<f> defined on T I \ n2 i 4

This applies to T = F(1)\H which, as in Figure 1.1, is a triangle. In partic-
ular it applies to / 's which are F(l) periodic, that is, we have

Ai(r(l)\H) > 1/4

proving Proposition A.2.2. •

Remark A.2.4. The spectrum of A on L2(F\H) is of fundamental interest.
The eigenfunctions of A which are F periodic and square summable (other
than the constant function) are known as Maafi forms and in this case are
cusp forms. For these there is again the problem of estimating their Fourier
coefficients and one has an analogue of the Ramanujan conjectures, though
these are far from being solved at present. See [JL] for details.

To prove Theorem A.2.1 we introduce Poincare series as in Section 1.5.
This time they are adapted to F\H and to A.

For m > 0 let

Um(z,8)= Yl yhz)8e(m^z). (A.2.4)

This series is clearly dominated by the corresponding Eisenstein series in
(1.4.3) and hence converges absolutely in Re (s) > 1. Moreover the term in
the series corresponding to 7 = ±1 is of the form yse(mz) which is rapidly
decreasing as y —> 00. It follows from this and the properties of the Eisenstein
series developed in Section 1.4 that Um{z, s) is in L2(F\H) for Re (5) > 1.
In fact it is clear that

\\Um(z,s)\\2 = O(l) uniformly for Re(s) > aQ > 1. (A.2.5)
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38 Chapter 1. Modular Forms

Now

A(ys e(mz)) + 5(1 - s) (ys e(mz)) = -4:irms(y8+l e(mz)).

Hence for Re (5) > 1 we have

(A, + 5(1 - a)) (Um(z, a)) = -Anms Um{z, s + 1). (A.2.6)

This may be written as

Um(z,a) = -/?,<!_,)(A) [AnmsUmiz.s + 1)], (A.2.7)

where R\ is the resolvent (A — A)"1 of A. We may use (A.2.7) to meromor-
phically continue the function Um(z, s) in s. In fact, restricting our attention
to F = F(l) we see from A.2.2 that Rs(i-S) is analytic in Re (s) > 1/2, with
the only pole at s = 1 corresponding to Ao = 0. Hence from (A.2.7) (since
the right hand side is shifted by 1) we see that

Um(z, s) is holomorphic in Re (s) > 1/2 . (A.2.8)

The pole at s = 1 does not occur for Um(z, s) since it is easily seen from the
definition of U that {Um(z, 5), 1) = 0.

For a general selfadjoint operator A it is an easy consequence of the spec-
tral theorem that

l | i ?A" - distance (A, spect A) * ( A 2 ' 9 )

Now dist[s(l - s),<r(A)] > \t\ (2a - 1), where 5 = a + it and a > 1/2.
Combining (A.2.9) with (A.2.7) and (A.2.5) we get

for Re (5) > a0 > 1/2.
The relation of Um(z, s) to Kloosterman sums comes, as usual, by com-

puting the Fourier development of the z »-• z + 1 periodic function Um(z, s).
In fact for m, n > 0 let

Z(m, n,s) = 22 LL (A.2.11)
c=i c

which we refer to as the Selberg-Kloosterman zeta function, see Selberg [Se].
By Weil's estimate it is clear that Z(m, n, 5) is holomorphic in Re (s) > 3/4
and in fact

|Z(m,n,s)| < 1 for a > a0 > 3 / 4 . (A.2.12)
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Lemma A.2.5.

(Um{-,s),Un(-,s + 2))= 4-*-1 it'1 n~2 Xvf' Z(m, n, s) + R(s)

w h e r e R(s) is holomorphic in R e (5) > 1/2 and satisfies

in this region.

Proof: By the usual calculation as in Section 1.5

TT ( \TT1 \dxdy

= /
Jo Jo

/
dxdy

-m . .1 dxdy
n { x y i y ) \

Now one may evaluate the integral

r (xa + i ) - . e->™*dx = -"(y™)'-1 wOtS_1/2(Anmy),
J-oo L \s)

where Wo)M(z) is the Whittaker function [GR, p. 860] and also

f V WoAtnNy)* = (to*)- ^ + 1/2
o y A

Using these in the above and setting w = s + 2, we get

(A.2.13)
where

00 fO° y 2 [
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Now
f o x-i \
I yc2(x2 + 1) J

exp< -27rra
I

exp(—

/
Jo

< / ydy-\- / y

<c-2

Hence jRm,n(s,c) < c-2 / |a - 1/2|.

This implies

exp(-27rny)

2a

is holomorphic in Re (s) > 1/2 and is O ( a\i2 ) m t m s region. This proves
Lemma A.2.5. •

As a consequence of (A.2.10) and Lemma A.2.5 we get the following esti-
mate on the growth of the zeta function Z(m, n, s)

Theorem A.2.6. Z(m, n, s) is holomorphic in Re (s) > 1/2 and

5 | l /2 X

\Z(m
( \s\1/2 \, n,s)\= Om,n T-JZ as t -» oo in a > 1/2.
\a- 1/2 J

Proof: This follows from (A.2.5), (A.2.10), Cauchy's inequality and Stir-

ling's formula for the gamma function. •

The passage from Theorem A.2.6 to A.2.1 is standard; we review it briefly.
Using Theorem A.2.6 and A.2.1 and applying the Phragmen-Lindelof prin-
ciple [Ti] we have

/ 1 + 8
I m,n, —— «I*! 1 ' 2 -<r+e

for e < cr < 1/2 + e. Proceeding by the usual Mellin inversion [Dal] we get

y ^ — —•— = ^— / Z \ m.n, —-— ) — ds + O \ ——— ) .

^ c 2m i1 /2+eo_ iT V 2 ; s \ T J

Now shifting the contour to Re (s) = e and using Theorem A.2.6 we get

xerl/2+e + £C<X

Letting T = x1/3 gives Theorem A.2.1.
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To conclude this Appendix we note that all of the above could be carried
out in the same way for any congruence group F (not necessarily F = F(l))
except that we would not know (and do not know) that Ai(F\H) > 1/4. In
fact the above arguments yield in the general case by Weil's bound (1.5.7)
that

Ai(T\H) > ^ (A.2.14)

for any congruence subgroup F.
The bound (A.2.14) is due to Selberg [Se] and represents a step towards

the 'Ramanujan' Conjecture A.2.3. It is the equivalent of Proposition 1.5.3.
(A.2.14) has to date been improved only to the extent Ai(F\H) > 3/16, see
[GJ]. Iwaniec [IW3] shows that for almost all (Fo(p),x) & further improve-
ment is possible.

Notes and comments on Chapter 1

For the following comments we assume that the reader is familiar with the
various notions from the theory of automorphic forms that are used without
being defined.

As mentioned earlier the Ramanujan conjecture for forms of even integral
weight k for T(N) were solved by Deligne [De]. Previously, Eichler [Eil]
and Igusa [Ig] settled the case of A: = 2. The solutions above reduce the
problem to the Riemann Hypothesis for curves over finite fields when k = 2
and to their generalizations - the Weil conjectures - for k > 4. The Hecke
operators play a central role here. For example when k = 2 the key comes
from investigating their reduction (modp) and its relation to the Frobenius
endomorphism. To obtain the Ramanujan conjectures in the form that we
have stated in 1.2.5, one must also investigate the Hecke operators Tp for p
dividing the level of F and in particular invoke the theory of new forms [AL].
See Rankin [Ra] for a treatment of what is needed here.

For the more general case of an arbitrary automorphic form, i.e., Maafi
form [JL] as defined in A.2.4, as well as for automorphic forms on GL{2) over
a number field, the Ramanujan conjectures remain unsolved. The method
of Section 1.5, which is due to Petersson [Pe], can be generalized and yields
non-trivial, and in general, the best known estimates. A striking approach
to the general Ramanujan conjectures in representation theory has been put
forth by Langlands [L]. In this approach automorphic forms on other groups
such as GL(n) play a key role. In this context it should be pointed out
that there is a very natural formulation of the Ramanujan conjectures in
terms of representation theory due to Satake [Sa]. This formulation which
asserts that for an automorphic cuspidal representation TT = <8>p7rp, np for
unramified p, is not in the complementary series. This viewpoint shows in
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42 Chapter 1. Modular Forms

particular that the Ramanujan conjectures 1.2.5 and the Selberg conjecture
(A.2.3) are really one and the same. Moreover this formulation extends to
other groups, though care must be exercised in doing so, as was discovered
by Howe and Piatetski-Shapiro [HP]. They give examples similar to the 1/2-
integral weight example 1.3.8 for which the natural Ramanujan conjecture
fails. In general very little is proven in the direction of the Ramanujan
conjectures. There are some qualitative results concerning the existence of a
non-trivial estimate due to Kazhdan [Ka]. These are shared by groups which
have 'property T' and in particular groups of rank > 2 (we note that this
'property T' and the corresponding non-trivial estimate has nothing to do
with F, the discrete subgroup, and hence apparently nothing to do with arith-
metic). In cases of the remaining classical groups, which do not have prop-
erty T, a quantitative result similar to Proposition 1.5.3 and (A.2.14), and
using the same basic technique, has been established by Elstrodt-Mennicke-
Griinewald [EMG] and Li-Piatetski-Shapiro-Sarnak [LiPS] for SO(n, 1) and
by Li [Li] forSC/(n,l).

Concerning the Ramanujan conjectures for half integral weight, a non-
trivial estimate in that direction will be established in Chapter 4. This
case appears to be fundamentally different from the even integral weight
case and the conjecture is in fact related to some other deep conjectures.
Waldspurger [Wa] and Konen-Zagier [KZ] have shown that for say To (4), if
f(z) G 5fc(Fo(4)) is an eigenform for the Hecke operators Tp2 and satisfies a
further orthogonality condition, and if g is the Shimura correspondent to / ,
so that g is an eigenform in S2fc-i(F(l)), then

Here D > 0 is a fundamental discriminant, the an's are the Fourier coef-
ficients of / and L(g <g> XD,S) is the automorphic L function attached to
g 0 XD- The special value s = k — 1/2 is the middle of the critical strip
of L(g <S> XD, S)' What emerges is that the Ramanujan conjecture for / is
equivalent to the Lindelof hypothesis for L (in the D aspect at the point
k — 1/2)! Needless to say, it would be of great interest to develop, even
conjecturally, as in the Langlands program mentioned above, an approach
to the Lindelof hypothesis. For some interesting work in this direction see
Bump-Hoffstein-Friedberg [BHF].

The theta function construction of automorphic forms in Section 1.3 was
generalized by Siegel [Sil] to include arbitrary quadratic forms. The general
setting and score for this theory has been laid down by Weil [We2] and Howe
[HI] respectively; see the latter's theory of dual pairs.

The main Theorem A.2.1 of Appendix 2 is due to Kuznietzov [Ku]. The
proof of this result by use of Selberg's zeta function and especially the growth
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estimate Theorem A.2.6 follows the paper of Goldfeld and Sarnak [GS]. The
foundational aspects of Appendix 1.2 (and also an excellent discussion of
the problem of estimating Fourier coefficients) is due to Selberg [Se]. As
was remarked in the text, this theory in the more flexible form of what is
known as the Kuznietsov Trace Formula [Ku] has been spectacularly applied
by Deshouillers and Iwaniec [DI]. The analog of Theorem A.2.1 for forms of
more general weight has been used by Vardi [V] to prove the equidistribution
of Dedekind sums. Meyerson [Mey], using Vardi's results, was able to settle
a related conjecture of Rademacher concerning the equidistribution of such
sums.
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Chapter 2

Invariant Means on L°°(Sn)

2.1 Invariant means

Let X = L°°(Sn) denote the Banach space of essentially bounded measurable
functions on the n-sphere with respect to the Lebesgue measure A. For
f e X and t e SO(n + 1), a rotation, let ft(x) = f(tx). By duality we may
define v € X* by vtf = v(ft)- An invariant mean on X, call it u, is a linear
functional satisfying

"(i) = i (0

i/(/)> 0 if / > 0 (u)

vt = v for all t e SO{n + 1). (m)

A is an invariant mean and, as is well known, the only one when viewed as
an element of C(Sn)* (i.e., as a measure). The problem we address here is
that of the uniqueness of A as an invariant mean on X. As was pointed out
in the Introduction, for n > 2, this is the Ruziewicz problem [Ba]. In Section
2.2 we show that for n = 1, A is far from being unique. In Section 2.3 the
question of uniqueness is shown to follow from the existence of an 's-good
set' whose definition is as follows:

A set £i, . . . , tr G SO(n + 1) is said to be e-good, where e > 0 is a fixed
number, if for any / € L2(Sn) with JSn fdX = 0 there is a j e {1 , . . . , r}
such that

\\ftj-fh>e\\fh.
Thus the problem of uniqueness for n > 2 becomes one of constructing such
an 6-good set. In Section 2.4 we show how to inductively (and effectively)
construct an e'-good set in SO(n + 2) from an e-good set in SO(n + 1).

Finally in Section 2.5 an explicit and even optimal £-good set is con-
structed in SO(S). It is in the proof of the '£-goodness' that we make use

45

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511895593.004
https:/www.cambridge.org/core


46 Chapter 2. Invariant Means on L°°(Sn)

of the Ramanujan conjectures.
An e-good set clearly generates a superbly ergodic group F C SO(n +

1). As such the explicit e-good sets can be used to generate optimally
equidistributed matrices in orthogonal groups and hence such points on a
sphere. We explain these ideas briefly in Section 2.6. For the record our
basic e-good set is the set £i, £2, £3 € SO(3) of rotations about the #i, #2, £3
axes in R3 through an angle of arccos(—3/5) - this set is § (3 — \/5)-good.

2.2 Nonuniqueness for Loo(51)

Let H be the linear subspace of X = L°°(Sl) spanned by functions of the
form ft — f where t e S1 and f e X. Clearly v G X* is invariant iff it
annihilates H. To produce an invariant mean other than A we need to find
elements in X outside of H other than constants.

Lemma 2.2.1. Let Ac S1 be a fixed open dense set, then for any h G H

ess infX£A h(x) < 0.

Proof: Let h G H. h is of the form J2k=i(Mtk — fk> For a large number
M consider

T(x) =

\m\<M

N

k=l \m\<M

- fk(x

where m G XN. Clearly for any x

-... + mNtN)

• • • + mNtN)]

(2.2.1)

On the other hand if essinfx€>i h(x) = £, then since A is open and dense we
can clearly choose x so that the points x\ + m\t\ + . . . + TUN^N, | ^ | ^ M
are all in A and hence for such x

T(x)>MNe. (2.2.2)

Since M is arbitrarily large, it follows from (2.2.1) and (2.2.2) that e < O.D
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2.3. Reduction to e-good sets 47

With this Lemma it is easy to see that H + Hxs1 + RXAC = Y is a direct
sum. In fact, define the linear functional v on Y by

v(h + axs* + PXA*) = OL (2.2.3)

where we now assume that A has been chosen so that X(AC) ^ 0. Then

Wh + axs* +@XA4 >esssupxGA|/i + ax^l = M

by Lemma 2.2.1, i.e.,

\u(y)\ < \\y\\ for yeY. (2.2.4)

By the Hahn-Banach theorem we may extend v to a linear functional v on
X satisfying

(t) u(H) = 0

(tt) I/(1) = 1

(Hi) \\u\\ = 1

(iv) v(XAc)=Q

These imply that v is an invariant mean and (iv) asserts that \^v.

The reader familiar with the notion of an amenable group will recognize
that it is this property that is crucial in deriving (2.2.1). Not suprisingly
the uniqueness of A for non-discrete, amenable (as discrete), G always fails
[Gr,Ru]. G = SO(3) is not amenable as a discrete group. In fact, as we will
see later, the rotations £1,̂ 2, £3 mentioned at the end of the Introduction to
Chapter 2 form a free group.

2.3 Reduction to e—good sets

Theorem 2.3.1. If ti,...,tk E SO(n + 1) are an e-good set then the
Lebesgue measure is the unique invariant mean on L°°(Sn).

Proof: Let v e X* be an invariant mean. Now X = (I/1)* and hence
v £ (L1)**. L1 is weak-star dense in (L1)** and since v > 0 and v(xsn) = 1
we can find a net {/(M)} G L1 with / ^ -> v weak-star, / f^dX = 1 and

^ > 0. Moreover since v is invariant we have that for each j = 1,. . . , fc,
M) -* ° weakly in Ll (since it does so weak-star in (L1)**). The

weak and strong closures of convex sets coincide so that we may take convex
combinations of the tails of f^ to get a new net g^ for which g\^ —g^ —» 0

ft ??
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48 Chapter 2. Invariant Means on L°°(Sn)

strongly in L1 for each j , and also J g^dX = 1 and g^ > 0. Moreover,

gM _> v weak-star. It follows that if y/gM = ftM then

for each j . Thus we have \\h^\\2 = 1 and \\h[f - h^\\2 -> 0. The e-good
property ensures then that h^ —• 1 in L2 and hence that

That is g^ —• 1 strongly in L1 and since also g^ —»i/ weak-star =» i/ = 1,
completing the proof. •

It is clear that a set J? i , . . . , Rk in 5O(n 4-1) is at most 2-good. Actually
it cannot be as good as \/2-good.

Proposition 2.3.2. A finite set Ru..., Rk e SO(n), n > 3, is at most y/2
good.

Proof: (C. McMullen) Let Ri,..., Rk be a given set of rotations. We can
clearly find a small open set U such that (Rj U) C\ U = 0 for each j . Now let
/ be supported in U with /S n_x fd\ = O and / 5 n _! |/2|dA = 1. Then

and so
Il*i/-/ll2 = 2 forj = l,...,fc. •

In Section 2.5 we will construct (\/2 — 7/)-good sets for every 77 > 0.

2.4 Inductive construction

Suppose we are given an £-good set t i , . . . ,t& G SO(n + 1). We construct
2fc rotations in SO(n + 2) as follows:

For each j = 1 , . . . , k let

/t °\
I, = J 0 e 5O(n + 2). (2.4.1)

Voo 1 )
Thus fj fixes the xn+2 ^^is m R71"1"2? that is it is a rotation about the N-S
axis of 5 n + 1 . In a similar way we define Sj e SO(n + 2), j = 1 , . . . , k by
making the same construction but with the N-S axis replaced by the 'E-W
axis' (by which we mean any axis orthogonal to the N-S axis).

Theorem 2.4.1. £1, . . . ,**, S i , . . . , 5* are e/(2k)-good.
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2.4. Inductive construction 49

Proof: As coordinates for 5 n + 1 we use spherical coordinates (0,r), 0 < 6 <
7r, r G Sn. 6 is measured from the xn + 2 axis. In these coordinates

f-tj(d,r) = f(e,tjT). (2.4.2)

A similar statement holds for the Sj if spherical coordinates about the E-W
axis are used. Define subspaces of L2(5n"1"1), AN, BN, AE, BE by

AN = {/I / ( * , T ) = /(fl,Pr), VP G 50(n + 1)} , (2.4.3)

i.e., AN consists of the functions radial about the N-S axis. BN = Ajj while
AE and BE are defined similarly.

For / G BN and p G .BE we claim that

T (2A4)

In fact f e BN ^ JSn f(0,r)d\n(r) = 0 for almost all 6. For each such
0 (2.4.2) and the hypothesis that t i , . . . , tk is e-good in r, we find that an
integration in 0 leads to (2.4.4). The same goes for BN and Sj.

Before continuing with the proof we establish the following important
lemma.

Lemma 2.4.2. If f G AN, g G AE and / 5 n + 1 fdX = 0 = /5 n + 1 gdX then

Proof: Decompose L2(Sfn+1) into the orthogonal decomposition in spherical
harmonics

fc=0

where Hk is the space of spherical harmonics of degree fc. We need only check
the Lemma for f,g G Hk, k > 1 and ||/||2 = \\g\\2 = 1- Moreover such an
/ G iffc fl AJV (and g e Hkf) AE) necessarily lies in the 1-dimensional space
of N-S rotation invariant eigenfunctions of the Laplacian on 5 n + 1 . That is
f(z) = /j,Wk(z,N), where Wk{z,Q is the zonal function [Fo] normalized so
that Wk{z,z) = 1, and \i is a scalar chosen so that (/,/) = 1. Similarly
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50 Chapter 2. Invariant Means on L°°(Sn)

g(z) = nWk(z,E). Thus

2 [ Wk(z,N)Wh(z,E)d\(z)
(2.4.5)

= fi
2h(k)Wk(N1E)

where h depends on fc only; the 'Selberg transform' W(z, C) is a spherical
function (see [Sz] or simply compute).

Moreover we also have

1 = (/, / ) = M2 h(k) Wk(N, N) = tf h(k). (2.4.6)

Thus (/, g) = Wk{N, E), and the Lemma will follow if we can show that

^ (2.4.7)p \ k ( , ) \
k>\ n

It is well known that the zonal function Wk(z, N) as a function of x = cos6
is a multiple of the ultra spherical polynomial PJ^n~ ' , [Fo] and [Sz]. Since
the N-S and E-W axes are orthogonal, what we want is the value of P at
x = 0. This may be evaluated explicitly [Sz] giving

Wk(N,E) =

The maximum occurs for fc = 1 giving the Lemma. •

We can now complete the proof of Theorem 2.4.1.
Given / with fSn+i fd\ = O and ||/||2 = 1 we may write

/ = ajv + &/v and also / = a# + bs (2.4.8)

with ajv £ AN, 6AT £ BN, Q>E € AE, ^E € BE- The considerations above
show that

H/t, - /Ib > T \\bNh for s o m e 3
* (2.4.9)

\\hjt - /Ib > ^ ||6N||2 for some f

We also have

and

\\aN - aE\\l > —— \\aN\\2 \\aE\\2n + 1
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2.5. e-good sets for SO(3) 51

by Lemma 2.4.2. Hence

In
rc + 1

The last combined with ||ajv||! + ll&Arlli = l l^l l i + ll& l̂li = 1 leads to the
fact that one of ||&JV||2 or ||&£||2 is > 1/2. From (2.4.9) this means that
?i,...,£fc, 5 i , . . . , Sk are e/(2fc)-good. •

2.5 £-good sets for 50(3)

In this section we give explicit and optimal e-good sets in SO(3). We know
from Sections 2.2 and 2.3 that there can be no e-good sets in S1. It is
instructive to see this directly. Let a\,..., ar G S1. We may choose O ^ m E
Z such that m(a1,..., ar) (mod 1) in R r /Z r is close to (0,. . . , 0) G R r /Z r .
This follows the pigeon hole principle. It follows that for e > 0 there is an
m such that the function

f(x) = e(mx) on S1

satisfies fsl f dX = 0 and \\fQj — /H2 = ||1 — e(raaj)|| < e for each j . Thus
it is clear that e-good sets cannot exist in S1.

For 5O (3) they exist and together with the inductive scheme of Section
2.4 these can then be used to construct explicit e-good sets for SO(n), n > 4
as well. Combined with Theorem 2.3.1 this establishes the uniqueness of A
for Sn, n > 2. Precisely, we show that the rotations t i , ^ ^ introduced at
the end of Section 2.1 are § (3 - VE)-good.

If S C 50(3) is a finite symmetric set, i.e., s E S => s~x E S then we may
define the 'Hecke operator' Ts on L2(S2) by

*) . (2.5.1)
ses

This is a Hecke operator of the type introduced in Section 1.6 (with F =
identity). Ts is a symmetric operator on L2(S2) with spectrum clearly con-
tained in [—A:, k] where k = \S\. A: is in fact in spectrum (Ts) since it is the
eigenvalue of T corresponding to the constant function. Let Ai (Ts) denote
the absolute value of the next-to-largest eigenvalue of Ts. The similarity to
Appendix A.2 is no coincidence.

Let
Sf5 = {£l,£J~ ,t2,^2 5̂ 35̂ 3" }

where t\, ti,H are rotations about the x\,#2,#3 axes through arccos(—3/5).

Theorem 2.5.1.

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511895593.004
https:/www.cambridge.org/core


52 Chapter 2. Invariant Means on L°°(Sn)

Remark: In fact one can show, see Lubotzky-Phillips-Sarnak [LPS1] that

spectrum (Ts) = {6} U [-2 y/b, 2 y/b].

From the variational characterization of the eigenvalues of a symmetric ma-
trix it follows from Theorem 2.5.1 that

ll/ti " /111 + ll/ta - /111 + ll/t, " /111 > 2 (3 - VS) H/ll

for all / € L2{S2) with / / d\ = 0. This implies that tut2, t3 are | ( 3 - y/b)-
good. •

The set 5s and the operator Ts5 comes naturally from integral quaternions.
Let H = {a = ao+aii+a2J+a3k}, i2 = j 2 = k2 = - 1 , i j = — j i = k, etc., be
the ring of quaternions. Then H(Z) denotes the ring of integral quaternions,
i.e., the ones with a,j G Z. For a G #(Z), a = ao — a\i — a2j — 03k, is its
conjugate and N(a) = a a . For a G i?(Z), JV(a) G Z. It is clear that the
units of H(Zi) are precisely those a G #(Z) with N(a) = 1 and consist of
the quaternions ±1, ±i, ±j, ±k. The number of a G H(Z) with N(a) = n is
equal to the number r4(n), using the notation of (1.1.4). We saw in (1.1.6)
that

d\n

Let p be a prime, p = 1 (mod 4). We consider the set of all a G #(Z) with
jV(a) = p. It is clear that for such an a = ao + aii + a2J + a3k, precisely one
of the a /s is odd. The units act on this set and it is easy to see that each
a! has a unique associate a = ea' for which

N(a) =p, a = 1 (mod 2) (in H(Z)) and a0 > 0. (2.5.2)

In view of (1.1.6) and the fact that there are eight units we see that the set
of a satisfying (2.5.2) consists precisely of p+1 elements and it clearly splits
into a = (p+ l)/2 conjugate pairs. Thus the set Sp of a satisfying (2.5.2) is
of the form

Sp = {ai,aT,. . . ,aa,o£} . (2.5.3)

There is a homomorphism of H(R,)* (the invertible elements of H(R)) into
517(2) given by

The elements of SU(2) correspond via stereographic projection to rotations
in 5O(3). The homomorphism (2.5.3) allows us to think of a G if(R)* as
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2.5. e-good sets for SO(S) 53

an element of SU(2) or 50(3), which we do (the meaning will be clear from
the context).

We define the Hecke operators Tn, n > 1 an integer; Tn : L2(S2) - • L2{S2)
by

r»/(C) = 2 £ / ( « 0 - (2-5.6)
a = l (mod 2)

N(a)=n

A simple calculation shows that

Via (2.5.3) this set S$ and the earlier one (before Theorem 2.5.1) coincide
and also T5 as defined in (2.5.6) is exactly the Ts5 from before. Theorem
2.5.1 is thus a special case of

Theorem 2.5.2.
X1(Tp)<2y/p.

We will need a few Lemmata.

Lemma 2.5.3. Every (3 € H(Z) with N((3) = pk has a unique representa-
tion

where £ < k/2, m + 2£ = k, Rm is a reduced word of length m in a i , . . . , a^
and e is a unit. By a reduced word in ai,aT, • • • ><*7 we mean a word in
these letters in which no ctj ot] or ctjaj appears.

Proof: We begin with the proof of the existence of such a factorization. In
Dickson [Di] it is shown that H(Z) is a left and right Euclidean ring and
that an odd element of H(Z) (i.e., N(a) is odd) is prime iff its norm is
prime. Since N((3) = pfc, (3 is odd. We may therefore write j3 = 7 5 where
N{y) = pk~x (if /? were not already prime) and N(6) = p. By using a unit
e and the definition of the set Sp we have the expression

(3 = 7 e a with a e Sp.

Repeating this factorization by factoring 7 and carrying out the cancellation
along the way leads to the required representation of j3 in Lemma 2.5.3.

To prove the uniqueness we count the number of such representations. It
is easily seen that the number of reduced words of length £ > 1 is

1 . (2.5.7)

Hence the number of factorizations of elements of norm pk is

2 '-1+ «(*)] (2-5.8)

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511895593.004
https:/www.cambridge.org/core


54 Chapter 2. Invariant Means on L°°(Sn)

where 6(k) = 0 if k is odd and 6(k) = 1 if k is even. Summing the series
we see that there are 8 (pk+1 — l)/(p — 1) such factorizations. On the other
hand from (1.1.6) this is precisely the number of elements of norm pk. Thus
each representation is unique. •

Lemma 2.5.4. If /3 = 1 (mod 2) with N(/3) = pk then /3 is uniquely
expressible in the form

where 2£ + m = k and i£m is reduced.

Proof: If /3 = 1 (mod 2) then since a* = 1 (mod 2) we see that in Lemma
2.5.3 e = 1 (mod 2) whence e = ±1. •

We note that this Lemma ensures that c*i,..., aa when viewed as elements
of SO(S) generate a free group (see the end of Section 2.2 where this was
quoted).

Lemma 2.5.5.
T-u = r?l2 TL. (-S- I

where Uv is the Chebyshev polynomial of the second kind

sin((*/ + 1) arccosx)
sin(arccosx)

The proof is a straightforward application of Lemma (2.5.4). From that
one derives the relations as in (3.4.33) of the next Section (as well as (3.4.35)).
Note in particular if u is an eigenfunction of Tp say,

Tpu = Xu then

/ 2 sin((i/ + 1)0)
T?"U = P/ — ^ r e — w h e r e (2.5.9)

A
COS0 =

To study the spectrum of Tn we examine its action on spherical harmonics
of degree m on 52 , i.e., its action on Hm(S2). Clearly these finite dimensional
subspaces are invariant for any Hecke operator 7$. Let u G JYm(52), m > 1.

Lemma 2.5.6. Fix Co £ S2 then the function F(z) for z G H given by

F(z) = ]T N{ar u(a Co) e
2niN^^32

a=2 (mod 4)

a€H(Z)
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is a holomorphic cusp form of weight 2+2m for the congruence group F(16).

Proof: We have seen in Section 1.3.3 (and in particular 1.3.7) that with

A=\ l
 1 | , n = 4, N = 4 and h = (2,0,0,0)

0(z, h,N)=
m=h (mod N)

is a modular cusp form of weight 2 + v for F(16), this being so for any
spherical harmonic P of degree v > 1 in four variables. Thus to prove the
Lemma it suffices to show that u(a Co) N(a)m with a = a + bi + cj + dk is
such a spherical harmonic in (a, 6, c, d).

Without loss of generality we may assume that Co is the south pole in S2.
A simple calculation then gives

= N(a)mu (j^-- (2(ca - db),2(da + 6c),c2 + d - a2 - b2)) .

Now iz(C) is the restriction to the unit sphere of a homogeneous harmonic
polynomial of degree m in three variables. Such a polynomial can be written
as a sum of polynomials of the form

3

(6*i + 6*2 + &x3r with

see [Sc2]. We may therefore assume that u is of this form. Then

N(a)mu(a(0) = (2fi(ca - db) + 2&(ad + be) + &(c2 + d2 - a2 - b2))m .

This is clearly a homogeneous polynomial of degree 2m in a, 6, c, d. It is also
harmonic as is easily checked using 5ZJ==i £>2 = 0. This then proves Lemma
2.5.6. •

We now complete the proof of Theorem 2.5.2. F(z) may be written as

where

a=2 (mod 4)
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56 Chapter 2. Invariant Means on L°°(Sn)

We apply the Ramanujan bound for cusp forms of weight 2 + 2m to get

M < £ i/m+1/2+£ . (2.5.10)

(Here u and C are fixed and the implied constant depends on them.) Hence

53 u(a()
a=2 (mod 4)

a€H(Z)
N{pt)=v

(2.5.11)

Writing JJL = u/4 (y divisible by 4) and 0 = a/2 in the above sum, gives
0 e #(Z), N(0) = [JL and 0 = 1 (mod2). Hence (2.5.11) reads

u(0{)
/3=1 (mod 2)

,1/2+e

In particular for /i = pk, p = 1 (mod 4) we have using Lemma 2.5.5

Now if Tp u = A u and £ is chosen so that u(Q ^ 0 then the above combined
with 2.5.9 gives

sin((fc + 1) 6)

where A = 2y/pcos0. The last clearly implies 6 is real and hence that
|A| <2y/p. This proves Theorem 2.5.2. •

Note that by using the bound established in Proposition 1.5.3 we would
get

which, even though it does not capture the complete truth, does suffice for
the application to the construction of an s-good set. That is, it shows that
tu t2, t3 are e = [6 - (53/4 + 5"3/4)]-good.

Recall that in Proposition 2.3.2 we showed that a set can be at best y/2-
good. Let 77 > 0 then if p > I/772 we show below that the set c*i,... , a a

as defined in (2.5.3), is y/2 — 77-good. Thus the rotations a i , . . . , aa provide
sets which are optimally £-good. To see this note that for / with Js2 fd\ = O
and 11/11 = 1 we have
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which follows from Theorem 2.5.2. Hence

Hence for some j = 1 , . . . , a

i.e., a i , . . . , OL<J is y/2 — 477-good.

2.6 Distributing points on S2

The rotations £1,̂ 2, £3 £ SO(3) are clearly ergodic in a very strong sense.
The group generated by these is clearly equidistributed in SO (3). More
precisely if we consider the 6.5""1 rotations which are reduced words in
£1^2 ̂ 3 (and easily generated recursively) of length 1/, they are very evenly
distributed in SO (3). This allows us explicitly to generate a large set of rota-
tions which are especially powerful in quadrature. By letting these act on S2

we get such sequences of points on S2. In Lubotzky-Phillips-Sarnak [LPSl]
an analysis of the distribution of these points on S2 is examined, and bounds
for the discrepancy are determined. In a certain sense (L2 quadrature) these
rotations are optimally equidistributed. Precisely if W\,..., WN £ 50(3)
are N rotations we define the L2-discrepancy of the sequence to be

D(W1,...,WN)= sup
J = l

One can show (see Lubotzky-Phillips-Sarnak [LPSl]) that for any choice of
N rotations W\,..., WN we have

On the other hand it follows easily from the considerations in this chapter,
(again see [LPSl] for details) that if TV = 6.51""1 and UI,...,UN are the
reduced words in t\,t2,ts of length v then

We conclude this chapter by noting that we have in fact shown that the only
invariant mean on L<x>(SO(n)), n > 3, is Haar measure. This follows from
our analysis since the irreducible representations of SO(n) are precisely the
representations above on Hm(Sn~l). In fact our analysis produces explicit
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e-good sets in 50(n), n > 3, which are e-good in the sense that (2.1.1)
holds for functions on G = SO(n). The question of the uniqueness of the
invariant mean for the general connected compact Lie group is discussed in
the notes to this chapter.

We end with a simple question. Given generic A,B G SO(n), n > 3, do
they form an e-good set for some e > 0?

Notes and comments on Chapter 2

Section 2.2: The nonuniqueness of A for non discrete topological groups
which are amenable as discrete groups is due to Granierer [Gr] and Rudin
[Ru].

Section 2.3: The reduction Theorem 2.3.1 and its proof are due to Losert
and Rindler [LR]. Rosenblatt [Ro] has some related results.

Sections 2.4 and 2.5: The solution of this Ruziewicz problem for n > 4
is due to Margulis [Mai] and Sullivan [Su] who used 'property T'. Drinfeld,
using adelic automorphic form theory and the Jacquet-Langlands correspon-
dence [JL], proved uniqueness for n = 2,3. The treatment in the text has
the advantage of giving a uniform treatment for n > 2 and more importantly
being effective. That is e-good sets with explicit and effective e and rotations
are constructed. The method using 'property T' has certain advantages. For
example Margulis has observed that with the exception of S0(2), SO(3), and
SO (4), every simple connected compact Lie group G, has a dense countable
subgroup F which has 'property T\ This implies (though non-effectively) the
existence of an e-good set in G (for L2(G)), for some e > 0. It follows from
this and the results of this chapter, that every simple connected non-Abelian
Lie group has a unique invariant mean. It is easy to see that if Gi and G2
have £-good sets then so does G\ x G2. Now it is known that every compact
connected Lie group G may be realized in the form

G = (To x Gi x . . . x Gr)/K (2.N.1)

where To is the identity component of the center of G, Gi are simply con-
nected simple compact Lie groups and K is a finite subgroup of the center.
Hence we conclude that a compact connected Lie group G has a unique
invariant mean on L°°(G) iff its center is finite.1

The treatment of the operators Tp in Section 2.5 uses the theory of Hecke
operators on L2(S2) developed in Lubotzky-Phillips-Sarnak [LPS1] and fol-
lows that paper.

1We do not know a characterization of this type for the general compact group.
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Notes and comments 59

Finally, Chiu [Chi] using the quaternion algebra D/Q which is ramified
exactly at 13 and, oo, has by the techniques of this chapter, constructed an
e-good set in 5O(3) with two rotations. He shows that if t\ is the rotation
about the N-S axis through n and t<i is the rotation through cos~1{l/(2v^)}
about an axis whose angle with the N-S axis is tan~1(-\/l3) then t\,t<i are
| (3 - 2V2)-good.
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Chapter 3

Ramanujan Graphs

3.1 Counting methods
The thrust of this chapter is the explicit construction of highly connected
sparse graphs. Before doing so we first demonstrate the existence of such
graphs by elementary counting arguments. We consider two examples; one
is the classical problem of the construction of graphs of large girth and large
chromatic number (see the introduction for the definitions) the second is the
construction of expander graphs.

3.1.1 Large girth and large chromatic number

Our aim is to show that for given integers k and p there is a graph X with
girth > k and chromatic number > p. This result is due to Erdos [Er] whose
argument runs as follows: Firstly note that any graph X whose maximal
independent set (i.e., a subset of the vertices V of X for which no two
elements are joined) is of size i(X), satisfies

^ (3.1.1)

where xPO is the chromatic number. Indeed, if X is colored with r colors
then each set Aj, j = 1,... ,r, of vertices with the same color is clearly
independent so that

and thus

The idea is to construct a graph with large girth and small independence
number i(X).

61
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62 Chapter 3. Ramanujan Graphs

Let fc, the girth parameter, be fixed and > 3. We let n be a large integer
which will serve as the order, \X\, of the graph to be constructed. Also let
m be an integer of order n1+£, where e > 0 and will be chosen later, m
will be the number of edges (which is slightly more than linear). Let p be
of order n1"77 (77 > 0 to be chosen) and it will correspond to the size of the
maximal independent set. Consider all graphs X (with labeled vertices) on
V = {xi , . . . , xn} with m edges. We show that the typical such graph (for
n large and X slightly modified) has the desired properties.

The number of labeled graphs X on n vertices with m edges is the number
of choices of m edges out of the total of (™) edges, i.e.,

m
(3.1.2)

Of these we bound from above the number which have at most n edges in
every V^ where V^ is any subset of X of size p. For a given V^ the
number of graphs as above with £ edges in V^ is

and hence the number with at most n edges in V^ is at most

(3.1.4)
The number of choices of V^ is (n) and so the total number of Xa's with

at most n edges from some V^ is

TTXi

if 2rj < e.
This almost does what we want since clearly there are no independent

sets of size p in almost all these graphs. However, the girth as it stands will
not be large. We bound the number of X&S which contain more than n/k
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3.1. Counting methods 63

closed circuits of length < k. We find that the number of these is also o (W).
Hence for large n we have an Xa (in fact almost every one) satisfying

(i) Xa meets every V^ in at least n + 1 edges,

(ii) Xa has < n/k closed circuits of length at most k.

If for such an Xa we delete the edges of any closed circuit of length < k, we
will be deleting at most n edges from Xa. Clearly the graph X so obtained
has girth > k and also it meets every V^ in at least one edge. Hence
i(X) < p and so x(Xa) > n77. So what remains is to prove the bound for
the number of Xa which have more than n/k closed circuits of length k.

A given closed circuit Xi —• X2 —• . . . —• Xe —> X\ of length £ < k is in
exactly

A * ) - A
\m-ej

of the Xa 's . Moreover a circuit is considered with order so that there are
n\/(n —1)\ circuits of length I. Hence the expected number of closed circuits
of length at most k is

^ prob (Xa) #[ closed circuits in Xa of length < A;]

n!
I > —

m

nk (2m)k

<C — 2fc = o(n) (if e < \/k which we assume).

Hence

2_. prob (Xa) — = o(n)
a

s.t. # of closed circuits
of length <k

is >n/k

which implies that almost all Xa (as n —• oo) have at most n/k circuits of
length < k.

Note that the size of the X produced, even with fc = 4 and \ = 4, is very
large.

3.1.2 Expander graphs

Let / and O be two sets of size n (again n —• oo). We want to construct a
bipartite graph between / and O (i.e., the edges run between / and O only
(see Figure 3.1)) with a linear number of edges, say kn of them (k fixed)
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64 Chapter 3. Ramanujan Graphs

X2'3

Figure 3.1: Bipartite Graph

and with the following expansion property: For any A C I with |J4| < n/2
we have

\dA\>c\A\, (3.1.6)

where c > 1 is a constant (clearly c < 2) and dA = {y G O\ (a, y) is an edge
from some a G A}.

A bipartite graph satisfying (3.1.6) with the above parameters will be
called an (n, k, c) expander. Let us now show by counting arguments that
such expanders exist. We do so for c = 3/2 and k = 5; the general case is
similar.

Let / = O = {1,2, . . . , n} and construct the bipartite graph X by taking
k permutations TTI, . . . , TT̂  of / and joining each j to 7rr(j) for r = 1 , . . . , A;.
This yields a Ar-regular bipartite graph, i.e., one with each vertex having k
edges. The claim is that for k = 5 and almost all choices of ir = (TTI, . . . , 7i>),
Xn satisfies (3.1.6). Clearly there are (n\)k such TT'S (though they do not
produce distinct -XVs).

Call 7T = (TTI, . . . , TTfc) bad if for some Ac I with \A\ < n/2 there i s ^ c O
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3.1. Counting methods 65

with \B\ < § \A\ for which TTJ(A) C B for j = 1,.. . , k. We want to bound
the number of such bad TT'S. For a given A with \A\ = t < n/2 and B with
t < \B\ = m < 1£, the number of bad TT'S corresponding to this A and 5 is

{m(m -l)...(m-t + l){n-t)\)k= ( ^ " ^ f ) • (3.1.7)

Hence the total number of bad TT'S, denoted by BAD, is at most

t<n/2 t<m<3t/2

n/3<t<n/2 t<m<

( 3 . L 8 )

n\ /n\ /m!(n-t)lfc

W W V (m-t)\

Now

t<n/3

For k > 5, 6t is largest for £ = 1 so that

7 < n 4 ( ( n - l ) ! ) f e , (3.1.9)

and hence I/(n\)k —• 0 as n —» oo. On the other hand

n/3<t<n/2 X V / / / n/3<t<n/2

ht is largest at one of the endpoints £ = ra/3 or t — n/2. Checking at these
points in combination with Stirling's formula one finds that II/(n\)k —• 0 as
n -> oo. Hence for k > 5 BAD/(n!)fc -> 0.

Thus expanders as defined in (3.1.6) certainly exist. Surprisingly the ex-
plicit construction of graphs satisfying the properties in Sections 3.1.1 and
3.1.2 is rather difficult.
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66 Chapter 3. Ramanujan Graphs

3.2 Spectrum of graphs

Let X be a graph with vertex set V = {vi, . . . , vn}. The adjacency matrix
of X is the n x n matrix A whose i,j entry a^ is a^ = # of edges from
Vi to Vj. Clearly A is symmetric (our graphs are not directed). From the
definition of matrix multiplication we see that if

Ar = (a?)

then
cq) = jfz of paths in X of length r from Vi to Vj. (3.2.1)

Another linear operator which is closely related to A when X is regular, is
the Laplacian A defined as follows:

where £2(X) is the vector space of functions on V(X), by

(v) = dvf(v)- ]T f(w). (3.2.2)

Here dv is the degree of the vertex v, that is the number of edges at v. A
useful formula for the Laplacian is obtained by integration by parts. Let
the edges of X be oriented in an arbitrary fashion. Thus to each e we have
vertices e+ and e~. Then the following relation holds

f(v) £
(3.2.3)

with the obvious meaning assigned to d f. In particular we see that

( A / , / ) > 0 . (3.2.4)

Hence A is symmetric and nonnegative. It is also clear that A/ = 0 iff
df = 0, i.e., / is constant on the connected components of X. Put another
way, the spectrum of A is real, nonnegative, and the multiplicity of the
eigenvalue 0 is the number of connected components of X.

When X is regular of degree k then the matrices A and A are related by

A = kl-A. (3.2.5)

From now on we will deal with regular graphs only and by Xn^ we mean
a &—regular graph on n vertices. By the spectrum of Xn^ we mean the
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3.2. Spectrum of graphs 67

spectrum of the adjacency matrix A, we denote its eigenvalues by Ao > Ai >
• • • > An_i. Clearly Ao = k, corresponding to the constant function and the
multiplicity of Ao is the number of components of X. It is also obvious that
\\j\ <k.

Lemma 3.2.1. An_i = —k iff X is bipartite. In this case the eigenvalues
are symmetric about 0.

Proof: By working on each component of X separately we may assume that
X is connected. If —A; is an eigenvalue we have

f(w) = -kf(v). (3.2.6)
(w,v)£E

Hence \f(v)\ < £ Yl(w,v)eE \f(w)\i i-e-> I/I *s 'subharmonic' and hence by the
maximum principle it must be constant. / is real so normalizing f(v) = ±1
we let / = {v\ f(v) = 1} and O = {v\ f(v) = - 1 } . It is clear from (3.2.6)
that / and O can have no edges within, i.e., X is bipartite. Conversely if X
is bipartite and / an eigenfunction of A then

E /M = */(").
(v,w)eE

By changing the sign of / on one side of the bipartition we get an eigenfunc-
tion with eigenvalue —A. •

Definition 3.2.2. We denote by ii\{Xn^) the absolute value of the next to
largest (in absolute value) eigenvalue of Xn^- Hence Ai < \i\.

The point of introducing the spectrum of a graph is that an upper bound
on Ai ensures that Xn^ has the expansion property while an upper bound
on fi\ gives an upper bound on the independence number. In this way we
can rephrase the problems introduced earlier in spectral terms.

Proposition 3.2.3.

Proof: Let / be an independent subset of vertices with | / | = r. Define the
function f(x) on X by

( 1 iixel

— c if x £ /

where r—(n—r) c = 0. Then / - L I and so by the variational characterization
of the eigenvalues of a symmetric matrix

(3-2.7)
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68 Chapter 3. Ramanujan Graphs

Since / is independent

Af(x) = -ck fovxel.

Hence
\\Af\\2>c2k2r. (3.2.8)

Now c = r/(n — r) = v/(l — is), where u = r/n, so combining (3.2.7) and
(3.2.8)

c2k2r < n\{r + c2{n - r))

- k
after some computation, i.e.,

1 ' " k '

Thus in order to construct graphs of large chromatic number we need only
construct graphs with the ratio fii/k small (independent of n).

Next we explain the expander-spectrum connection.

Proposition 3.2.4. Let X2n,k be a k-regular bipartite graph, then X is an
(n, fc, c) expander with

2 k2

C > p 2̂ •

Proof: Let B c / with |B| < n/2. Let

10 otherwise.

Then

cy, say, if y € oB.

The number of edges running between B and d £ is, on the one hand
while on the other it can be expressed as ̂ 2yeQB cy Hence

Now

y = k\B\. (3.2.8a)
yedB

yedB
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hence

Let 0 j and 0O be the normalized eigenfunctions of A corresponding to the
eigenvalues k and —k respectively. We may write

f(x) = -L=L (t>o(x) + -LJ= </>Q(X) + ft(x), (3.2.8c)

with (ft,0o) = (ft>0i) = 0- Then

P / | | 2 < ^ J £ U _ + A l < f t > / l ) . (3.2.8d)

Also

Combining this with (3.2.86)

< ( f c2_A2 )

i.e.,

T>f
By the same argument one can prove:

Proposition 3.2.5. Let Xn^ be an arbitary k-regular graph; then for any
set B C V with \B\ < n/2

\dB\>c\B\

with c = (k — \\)/2k. (Such graphs have been called (n, A:, c) enlargers by
Alon [Al].)

Also along the same theme we can bound the diameter of an Xn^ in terms
of/xi.

Proposition 3.2.6.

log(2n)
<

log
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70 Chapter 3. Ramanujan Graphs

Proof: Let <t>j(v), j = 0, l , . . . ,rc — 1 be an orthonormal basis of £2(V)
consisting of eigenfunctions of A, with eigenvalues Xj. Our assumption is
that \Xj\ < Hi for j ^ 0. Also (j>o(v) — l/y/n, Ao = k. For any polynomial
P we have, on applying the spectral theorem,

n- l

P(A)(v,w) = £P(A,-) * ; ( * ) * » . (3.2.9)

For v, w e V suppose dist (v, w) > iV, then clearly

P(A)(v,w) = 0 (3.2.10)

for any polynomial of degree N. Using this in (3.2.9) yields

n - l

or

n - l

< sup

n- l

< sup ' ~'% v'

< sup |P(A)|,
|A|<MI

i.e., we have, for any polynomial of degree < N

P(k) <n sup |P(A)|. (3.2.11)
| |

To get the maximum out of (3.2.11) we apply it with P(x), a Chebyshev
polynomial, since these have well-known extremal properties in L°°. Let

PN(x)=TN(x/v,i),

where

TN(x) = cos(N arccos(x)) = \ {{x + i \ / l - x2)N + (x - i y/l-x2)N} .

Clearly P/v(x) < 1 for |x| < /xi hence we get from (3.2.11) that

< n
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and so

or

The last three Propositions show that in order to obtain the desired prop-
erties for an Xn^ it is desirable to make \\{X) and ii\(X) as small as
possible. This leads us to the definition of a Ramanujan graph. Before giv-
ing it we prove a Proposition which limits from below the size of Ai (and
hence /ii).

Proposition 3.2.7. Let k be fixed, then

lim( inf
n—oo |Xm, fc |>n

the inf is taken over all Xm^ 's with > n vertices.

Proof: We must show that if e > 0 is given then for n large enough
^i(Xn,k) > 2\/fc — 1—e for any Xn^- Suppose not, that is there are arbitrary
large n's and corresponding Xnys for which

Ai(Xn,fc) < 2Vk^l - e. (3.2.12)

Consider for r > 0

tr(^) = £a$J = XX (3.2.13)
3=1 3=0

Now Ojj is the number of paths of length r from Vj to Vj. Clearly this
number is greater than or equal to the number of paths of length r from v
to v, where v is any vertex of the infinite fc-regular tree. This may be seen
by realizing the A:-regular tree as the universal covering of Xn^ and noting
that every closed path from v to v on the tree gives rise to one on Xn^ (here
v is a lift of Vj). Let p(r) denote the number of paths of length r on the tree
from some vertex v to itself. We have

J . (3.2.14)
3=0

p(r) may easily be computed (we leave it to the reader):

p(r) = 0 for r odd,
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Hence

and using (3.2.12) we get

n i = o

^ + ̂  E >Sm+l- E A->
|Ai|<2Vfc-l-e

JJJ>p(2ra)

-fc<Ai<-2%/fc-l-|-e (3 2 1

Now (p(2m))1/^2m^ —• 2\/A; — 1 as m —> oo, so choosing m large enough we
can arrange

p(2m)1/(2m) > 2v/fc^l - e/2. (3.2.16)

Also

so for m large enough, say m> M,

n n
>

2

(Here M depends only on A: and e.)
Hence for n large enough

-
n

> \
3

However we also have from (3.2.15)

- V A^+1 +
n *—' J

\j<-2y/k-l+£

If we substitute this into (3.2.18) we get

- A:2m+1

n

3
^ T - e/2)2m ^l - e) + -

n

(3.2.17)

(3.2.18)

0.

For n large enough this is impossible.

Finally we make the definition

Definition 3.2.8. A graph Xn^ is called Ramanujan if

0.
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A bipartite Xn^ is called a bipartite Ramanujaii graph if

Proposition 3.2.7 asserts that asymptotically as n —• oo Ramanujan graphs
are optimal in minimizing Ai and /xi. Of course they enjoy in a strong way
the properties ensured by Propositions 3.2.3, 3.2.5, and 3.2.6. For small
values of n and k one can check directly that a graph is Ramanujan. That
they exist with n —> oo is the subject matter of the next section.

3.3 Explicit Ramanujan graphs

The Kloosterman sum bound of Weil (1.5.8) shows that the numbers
x (modp) as x runs through 1,2,... ,p — 1 come down in a 'random' man-
ner, that is the cancellation of the p terms in the series (each of which is a
root of 1) is as much as yjp. This is what one would expect of a random
sequence. Hence we may expect that the graph X defined below through
such arithmetic operations, to have expansion properties.

Let the vertices of Xp be the points {0, . . . , p — l,oo} of PX(FP), the
projective line over the field with p elements. Join £ —• £ + 1, £ — 1 and
£ for each £ e P1(FP). In this way we get a 3-regular graph with p + 1
vertices. We might expect that Xp is an expanding family. Actually one can
show that Xi(Xp) < 2.9991 and so by the results of the last Section Xp does
have the desired properties. The bound however is poor and we now give an
explicit family of Ramanujan graphs.

We begin with the description of the graphs. Let p, q be unequal primes
both = 1 (mod 4). This last restriction can easily be removed; we have im-
posed it simply to keep the description simple. Let i be an integer satisfying
i2 = — 1 (modg). Prom (1.1.6) we know that there are S(p + 1) solutions
a = (ao,ai, 02,03) t o

ag + a? + al + a |=p. (3.3.1)

Among these there are exactly p + 1 with ao > 0 and odd and a^, j = 1,2,3
even. To each such a associate the matrix a in PGL(2, Z/gZ), by

a = [ . (3.3.2)
\ -a2 + ^ a3 a0 - t a>i )

This gives us k = p + 1 matrices in PGL(2, Zt/qZi).

1For k = 3 the Ramanujan graph has Ai < 2>/2 = 2.828. ... For a proof of the
2.999 bound see [LPS2].
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74 Chapter 3. Ramanujan Graphs

Our graphs will be Cayley graphs of the group PGL(2, Z/qZ) relative
to the above generators. Quite generally if G is a group and S a set of
generators of G which is moreover symmetric (i.e., s G S => s"1 € S), then
one can construct a graph called the Cayley graph of G relative to 5 as
follows: The vertices of X are the elements of G while the edges run from g
to sg for each s € S. In this way we get a |S|-regular graph on \G\ vertices.

Returning to our case of G = PGL(2, Z/qZ) and 5 the set of p+1 elements

of G as above (5 is symmetric) we get a graph of order n = q(q2 — 1). If

(R j = 1 then this graph is not connected since the elements of 5 all lie

in the index two subgroup PSL(2, Z/qZ) (i.e., elements whose determinant

is a square). We define the Cayley graphs XVA to be the above Cayley

graph if (A = - 1 and to be the Cayley graph of PSL(2,Z/qZ) relative

to S if (*\ = 1. The graphs X™ will be shown to be connected. If

( | J = —1, Xp>q is bipartite, the bipartition corresponding to the subgroup

P5L(2, Z/qZ) and its complement. Thus Xp>q is a k = (p+ l)-regular graph

on n = q(q2 — 1) or q(q2 — l)/2 vertices depending on the sign of

Theorem 3.3.1.

Case (i): (f) = - 1 ,

(a) Xp<q is a bipartite Ramanujan graph,

(b) girth (XP'O) > 4 logp q - logp 4,

(c) diam (X™) < 2 log n + 2 logp 2 + 1.

Case (ii): (f) = 1,

(a) Xp>q is a Ramanujan graph,

(c) diam (X*«) < 2 logp n + 2 logp 2 + 1.

In particular Xp '9, ( | J = 1 give explicit graphs of large girth and small
independence number and hence have also large chromatic number. Also
in view of Proposition 3.2.4 these graphs with f£ J = —1 give explicit ex-
panders with coefficient of expansion as in that Proposition. The statements
(i)(c), (ii)(c), (d), and (e) all follow from the Ramanujan property (a) and
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Propositions 3.2.3 and 3.2.6. One comment here is that as it stands Propo-
sition 3.2.6 does not apply to the bipartite Ramanujan case, however the
proof given there is easily modified to include this as well. So what needs
to be shown is that Xp'q is Ramanujan (or bipartite Ramanujan) as well
as establishing the girth lower bounds. Concerning these we note that for
[ £ J = — 1 the XPjQ give fc-regular graphs of order n with

girth (Xnik) > - logfc,! n. (3.3.3)

This in fact is the (asymptotically) largest known girth for fc-regular graphs.
Random (or counting methods) graphs have girths g{Xn^) asymptotically
logk_1n [Bo2]. It is also clear on the other hand that girth (Xn^) <
2\ogk_1n for any Xn,fc.

Concerning the diameter of graphs Xp>q we expect that it is essentially as
small as possible. Precisely, for e > 0

diam (Xp>q) <(l + e) log n + C£

as n —• oo.

3.4 Proofs

In this section we give proofs of the claims made in Theorem 3.3.1. As in
Chapter 2 the integral quaternions H(Z) play a central role and we will use
the same notation as in Chapter 2. Let

A'(2) = {a € H(Z)\ a = I(mod2) and N(a) = pv, v € Z} .

Here p is our fixed prime p = 1 (mod 4). A'(2) is closed under multiplication
and if we identify a and (3 in A'(2) whenever ±pUla = pU2/3, u\, v2 € Z then
the equivalence classes so obtained form a group with [a] [/?] = [a /?] and
[a] [a] = [1]. Lemma 2.5.4 implies that this group which we denote by A(2),
is free on [ai] , . . . , [as]. The Cayley graph of A(2) with respect to the set 5
is therefore a tree of degree p + 1. This tree will be denoted by A(2) as well.
We have thus realized this free group or tree in a suitable number theoretic
way. In order to form finite graphs we choose a normal subgroup T of A(2)
of finite index. Then F acts on A(2) by multiplication on the right and the
quotient graph (or group) A(2)/F is finite. This is then the Cayley graph of
A(2)/F with respect to the generators a^F, a^F,.. . , ajF.

In order to have any number theoretic significance we must choose F in
an appropriate way. Let (m,p) = 1 and consider all [a] G A(2) such that
2m\aj, j = 1,2,3 where a = a0 + aii + a2] + 03k. This defines a subgroup
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76 Chapter 3. Ramanujan Graphs

A(2ra) of A(2). It is a normal subgroup of finite index in A(2) since it may
be viewed as follows.

Let H(Z/(2ra)Z) be the ring of quaternions with entries in Z/(2ra)Z and
Jff(Z/(2m)Z)* the invertible elements in this ring. Let Z C H(Z/{2m)Z)*
be the central subgroup Z = {ao : ao ^ 0}. The homomorphism 0 : A(2) —•
H(Z/(2m)Z)*/Z defined by [a] - • (a mod 2m) Z is well defined. Its kernel
is A(2ra).

Now let m = q as in Section 3.3. We show that the graph Xp'q may be
identified with the Cayley graph of the group A(2)/A(2q) with respect to
the generators a i , . . . ,a7. This will establish that Xp'q is connected.

Define the homomorphism <p : A(2) - • PGL(2, Z/qZ) by

r , > at mod q • / do + I CL\ a<i + I as \

~* V ~a2 + ia>3 ao — iai J

where i is a fixed integer satisfying i2 = — 1 (mod^).

Proposition 3.4.1.

[PGL(2,
Image 0 = <

Proof: If a,- G if (Z) is of norm p then ^(a^) is in PSL(2, Z/qZ) iff ( | ) = 1.
Since [PGL(2, Z/gZ); P5L(2, Z/gZ)] = 2, it suffices to show that <£(A(2)) 2
P5L(2, Z/gZ). Now </> factors as

A(2) ^ ^ H(Z/{2q)Zy/Z - ^ H(Z/qZ)*/Z ^ PGL(2, Z/gZ).

7T3 is an isomorphism so what needs to be checked is the image of TT2 O m.
To prove the Proposition it suffices to show that if ft — bo + &ii -I- 62 j 4- 63 k
is in H(Z/qZ) and is of norm = 1 (mod q) then there is an a € H(Z) with
JV(a) = pfc, a = 1 (mod2) and a = /3 (modg). Let such a /? be given. Set
7 = 7o + 71 i + 72j-f 73k where 70 = b0 (modg), 2^ = ^ (modg), j = 1,2,3.
Then

7£ + 47l
2 + 4 7 | + 4 7 | = 1 (

We need some results from the theory of quadratic Diophantine equations
and in particular the singular series of Hardy and Littlewood. Malyzev [Mai]
obtained the following: Let f(x\,..., xn) be a quadratic form in n > 4 vari-
ables with integral coefficients and discriminant a. Let (g, 2d) = 1 be such
that for m sufficiently large with (y, 2md) = 1 and m generic for / (i.e., / =
m may be solved mod^ for every I) and if (61, . . . , 6n, g) = 1, / ( 61 , . . . , bn) =
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m (mod #), then there are integers (a i , . . . , an) = (61, . . . , bn) (modg) such
that / ( a i , . . . ,an) = m. Indeed he obtained an asymptotic formula for the
number of such (a i , . . . , an) as m —• 00 (i.e., the singular series).

We apply this to

/ (z i , z 2 , z 3 , z 4 ) = #? + 4 z 2 + 4z2 + 4x2 ,

m = pk, 9 = q, and (&o,&i, 62,63) = (70,7i,72,73)- If k is large enough and
pk = 1 (modg) then /('fo, 71,72,73) = Pfc (modq) and p* is generic for / .
Hence there is an (ao ,ai,a2 ,a3) = (70,71,72,73) (modg) satisfying

Hence if a = ao + 2 aii + 2 a2j 4- 2 ask then JV(a) = pfc, a = 1 (mod 2), and
a = /? (mod^).

From Proposition 3.4.1 it follows that A(2)/A{2q) ^ PGL(2,Z/qZ) or
PSL(2,Z/qZ) depending on the sign of ( E J . Furthermore the homomor-
phism takes the generators a i , . . . , a j to the matrices (3.3.2) and hence XP)<*
may be identified with A(2)/A(2g). Next we prove the lower bound for the
girth, i.e., part (b) of Theorem 3.3.1.

3.4.1 Girth lower bound

Xp>q is a Cayley graph and hence homogeneous. The shortest circuit may
therefore be assumed to run from the identity to itself. On the tree A(2)
this amounts to the length of the smallest member of A(2q). If 7 6 A(2g),
7 T̂  e, is of length t then we can find an integral quaternion 7 G A'(2) such
that

7 = £i#2 •. • Pt with 0j e {a i , . . . , a i}

and 7 G A;(2g). Thus AT(7) = p* and 7 = ao + 2gaii+2ga2j+2ga3k, av G Z.
Now as 7 ^ e at least one of ai, a2,03 is nonzero. Thus we have

p* = a2
0 + Vf l i + 4g2al + V a ^ . (3.4.1)

In case ( R J = 1 we observe that since some 0 ^ dj for some j = 1,2,3,

or t > 2 logp g as claimed.

In case ( 2 j = —1 we first note that t must be even, for if not we would

have on reducing mod q

or - =
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78 Chapter 3. Ramanujan Graphs

Thus t = 2r say. In this case (3.4.1) has the trivial solutions ao = ±pr. The
congruence

X^=pt {modq2) (3.4.2)

has as its only solutions

X0 = ±pr {modq2).

If we assume that (3.4.1) has a non-trivial solution with

P* < q - w

then pr < q2/2 and so any solution Xo of (3.4.2) which is not ±pr will by
the above satisfy

\X0\>
q-.

Hence XQ > g4/4. But then clearly p* > q4/4 contradicting (*). Thus we
have pl > qA/A or

4 log q — log 4
t>

logp

Finally note that when (| j = 1, Xp>q is not bipartite (this will be used
later on). For if it were we would have X = PSL(2, Z/qZ) partitions into A
and B such that a3-, A = B and ctjB = A for each a i , . . . ,o j . Clearly then
A is a subgroup (in fact the subgroup of elements expressible as a product
of an even number of elements of QL\,..., oj) of PSL(2, Z/qZ), of index two.
Hence A is normal, but since for q > 3, P5L(2, Z/qZ) is simple, this is
impossible.

To complete the proof of Theorem 3.3.1 we still need to verify that Xp>q

is Ramanujan.

3.5 Proof of Theorem 3.3.1

One may view the spectral theory of A on X = A(2)/F = T/F, where T is the
p + 1 regular tree and F a discontinuous group of automorphisms acting on
T, as the spectral analysis of A acting on F periodic (automorphic) functions
on T. First we consider the operator A acting on all functions on T;

Af(x) = ^^ f(v)» ^ — distance on the tree. (3.5.1)
d(y,x)=l

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511895593.005
https:/www.cambridge.org/core


3.5. Proof of Theorem 3.3.1 79

The kernel of A, call it fc^x, y), takes the form

f 1 if d(z, i/) = 1
M \ I \ " if /

10 if d ( z , j / ) ^ l .

Let An be the operator with kernel fcn(x, 2/) where
f 1 if d(x, ?/) = n

kn(x,y) = <
10 otherwise.

i.e.,

An fix) = Yl f(y)-
d(x,y)=n

The An's are in the polynomial algebra generated by A; in fact a moment's
thought shows for n > 2

2/

and so
An Ax =A1An = An +i + p i n - i • (3.5.2)

A straightforward calculation with (3.5.2) then shows that

(^) ( 3 -5 -3 )

0<r<t/2 X V ^ 7

where t/t is the Chebyshev polynomial of the second kind

sin((t + l) arccosx)
sin(arccos x)

(3.5.4)

We now restrict the operators Am to A(2q) automorphic functions; i.e., to
the finite dimensional space Xp>q — A(2)/A(2q) and compute the trace of
the operators in (3.5.3). Let the spectrum of A(2)/A(2q) as a graph (or
viewed as the spectrum of A\ on A{2q) automorphic forms!) be as usual
Ao > Ai > . . . > An_i. Write

\j =2^pcos9j. (3.5.5)

Then

On the other hand we can compute the trace from the right hand side of
(3.5.3), i.e., geometrically

trace At -20 = E E
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80 Chapter 3. Ramanujan Graphs

Since A(2q) is a normal subgroup of A(2) we have that A(2)/A(2<j) is a
homogeneous graph so that for any x

7€A(2g)

Hence

trace At_2r = \X\

= \X\ | { 7 G A(2g)| d(7e,e) = t - 2r}| . (3.5.7)

Let

2,x3,x4) = xj + (2q)2x\ + (2g)2z^ + (2g)2zl . (3.5.8)

As in Chapter 1 let TQ (y) be the number of representations of v by Q. Clearly
rQ(pk) is the number of a G H(Z) such that 2q\a — ao and N(a) = pk. By
Lemma 2.5.4 every such a is uniquely of the form ±p r Rt(ai,..., aj) where
2r + £ = k and where [a] G A(2g). It follows that

rQ(pk) = 2 ^ |{a G A(2g)| d(a, c) = fc - 2r}| . (3.5.9)

We have used the fact that reduced word length in the a's corresponds to
distance on the tree A(2). Combining (3.5.9) with (3.5.7) and (3.5.6) we get
the identity

i=0

We are now in the position to apply the theory developed in Chapter 1,
indeed we are precisely in the Ramanujan type setup. Prom (1.3.12) and
(1.4.10) we have

rQ(pk) = 6(pk)+a(pk) (3.5.11)

where a(pk) is the Fourier coefficient of a cusp form of weight two for F(16 q2)
while 6(pk) is the coefficient of an Eisenstein series of weight two. In view
of the calculations made in Section 1.4 we know that 6 is of the form

6(m) = ^2dF(d) (3.5.12)
d\m

where F : N —• C is periodic of period 16 q2.

Lemma 3.5.1. Let G : N —• C be periodic and satisfy

o{pk) asfc-oo
d\p*
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3.5. Proof of Theorem 3.3.1 81

then
Y ^ O for all fc.

Proof: Let ak = £d ) p f c dG(d), then

ak

Now as k —> oo the left-hand side —• 0 and since G is periodic it follows that
G(pk) = 0 for all fc. •

Returning to (3.5.10) and (3.5.11) we have

j=o

The term a(pk) may be estimated by the Ramanujan bound

a(pfc) = O e ( / ( 1 / 2 + € ) ) . (3.5.13)

We have

We now distinguish the cases ( E j = ±1.

Case (i): f E) = — 1. In this case we have seen that XVA is bipartite
and hence its eigenvalues are symmetric about zero. We have Ao = p + 1,
An+i = — (p+1) and \Xj\ < p+1 for 1 < j < n — 2 (since Xp'q is connected).
For k odd the right hand side of (3.5.13)- is thus zero while for k even we
have

6{pk) + Oe(pfc(1/2+e)) = - ^ d + o ( / ) as ib - • oo.
nn

Hence applying Lemma 3.5.1 we learn that

{ 0 if fc is odd

- Yd if fc is even.
d\P*

Eliminating this leading term in (3.5.13) we get
2pk/2 ^ sin(fc + 1)0j „ , k/2+ek,—— > — . ^ 3 = Oe(p

k/z+ek) as fc
n ^ ^ sin0 KF }

> . ^ e p ) CXD .

n ^ ^ sin0 KF }

3=1
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82 Chapter 3. Ramanujan Graphs

Hence

The last clearly implies that 0j, 1 < j < n — 2, are all real, i.e., |Aj| < 2y/p

for 1 < j < n - 2. That is we have shown that for (A = - 1 , Xp>q is a

bipartite Ramanujan graph.

Case (ii): f | J = 1. Now as we saw at the end of Section 3.3, Xp'q is not

bipartite. This time we have

Hence by the Lemma
^ 2 ( ^ - 1 )

and this time

Hence Oj are real for 1 < j < n — 1, i.e., Xp '9 is a Ramanujan graph.

To prove Xp'q is Ramanujan we used the full solution of the Ramanujan
conjectures for weight two. Using the weaker bound proved in Proposition
1.5.3 would lead to Ai < p 3 / 4 + p~ 3 / 4 , which though not giving the complete
truth is sufficient for many applications of these graphs.

Finally we can use the graphs Xp'q to create a related family of Ramanujan
graphs Yp>q as follows. PGL(2, Z/qZ) acts on P1{Fq) = { 0 , 1 , . . . , q - 1, oc}
in the usual linear fractional way. We turn P1 (Fq) into a (p+l)-regular graph
by joining £ € P1 to 7^ where 7 G {a , . . . , a j } . This gives the graph Yp>q.
It has order q + 1 and is regular of degree p + 1 (it clearly will have loops!).
Any eigenfunction / of A on Yp'q gives rise to one F on Xp'q with the same
eigenvalue. In fact F(g) = f(g(O)) supplies this correspondence. To show
that Yp'q is Ramanujan (non-bipartite) we must show that — (p+1) is not an
eigenvalue of Yp>q. If it were we clearly must be in the f 2 J — —1 case and we
can assume F(g) = f(g(O)) is 1 on P5L(2, Z/qZ) and —1 on the complement.
Now F is constant on the subgroup { (" £) a<5 ̂  0}. This subgroup clearly
contains members of P5L(2, Z/qZ) as well as its complement which is a
contradiction.

The graphs of x 2 ' 3 , y 5 ' 1 3 , F 5 ' 1 7 are displayed in Figures 3.1 and 3.2.
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Figure 3.2(a) and Figure 3.2(b)
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84 Chapter 3. Ramanujan Graphs

Notes and comments on Chapter 3

3.1. The problem of constructing graphs with large girth and large chro-
matic number was solved by Erdos [Er] by the method given in the text. For
a history of the problem see [Bol]. An explicit solution to this problem is
due to Lubotzky-Phillips-Sarnak [LPS2,LPS3] via the graphs X™ of this
Chapter.

Expander graphs are the basic building blocks for the construction of su-
perconcentrators and nonblocking networks, see Pippenger [Pil]. The ran-
dom construction of expanders was first carried out by Pinsker [Pin], see also
Pippenger [Pil] and Chung [Chi]. The explicit expanders produced in this
chapter are still not as good as what can be achieved by counting arguments.
To see the difference consider the construction of expanders with, say, 3n
edges. For each 0 < a < 1 one seeks graphs which expand sets of size a n
in O to sets of size (3n in / . Pippenger [Pi2] has obtained upper bounds
for (3 as a function of a. The Ramanujan bipartite cubic graphs provide
explicit graphs with expansion /? as a function of a via Proposition 3.2.4.
Also the random method provides a function (3 of a. Figure 3.3 is a plot of
these functions /3(a). a is on the x-axis and j3 on the y-axis. The lowest
curve is the diagonal y = x. Next is the curve corresponding to the explicit
bipartite Ramanujan graphs. The third curve is the random construction
(Chung [Chi]). Finally the minimum of the top two curves constitute an
upper bound of the best possible expansion of sets of size a n, Pippenger
[Pi2]. The plot was provided to us by Pippenger. There is clearly room for
improving the explicit and random constructions.

3.2. Proposition 3.2.4 relating the expansion coefficient to the spectrum is
due to Tanner [Tan]. The article of Alon [Al] explains in a very clear way the
relation between eigenvalues and expanders. The bound for the diameter in
Proposition 3.2.6 is essentially derived in Lubotzky-Phillips-Sarnak [LPS3].
For bounds on diameter and its applications as well as the construction of
another family of interesting arithmetic graphs see Chung [Ch2]. The lower
bound Proposition 3.2.7 is stated in Alon's paper [Al]; the proof here is due
to Lubotzky-Phillips-Sarnak [LPS3].

3.3. and 3.4. The construction and analysis of the graphs Xp'q carried out
here follows closely the paper Lubotzky-Phillips-Sarnak [LPS3]. Margulis
[Ma3,Ma4] has independently obtained a similar construction as well as some
of the results in these Sections. In fact the first explicit construction of an
expander graph (though without any determined expansion coefficient) is
due to Margulis [Ma2] who made use of group representations and property
T. For a discussion of the group representation approach as well as the
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Figure 3.3: Pippenger's Plot

number theoretical ones see the article of Bien [Bi]. The recent article of
de la Harpe and Valette [H-V] gives a nice discussion of property T and
applications to expander graphs and invariant means.

Ihara [IH] constructs a family of Ramanujan graphs. The adjacency ma-
trices of these graphs are essentially the 'Brandt matrices' [Ei2]. While these
graphs may not be as explicit as the Xp'9's they do carry very interesting
number theoretic information. They are intimately connected to the re-
duction of the modular curves XQ(£) (modp) where £ is a prime unequal
to p. Mestre [Me] has even used them very effectively to compute Fourier
coefficients of holomorphic forms of weight 2 for TQ(N) for large N.

Friedman [Pr] has recently shown that the random 2/z-regular graph (as
n —» oo) is close to being Ramanujan; he shows that

Finally we note that one can easily modify the construction of the Xp'q

above to include the case of p = 3 (mod 4) (p prime). The prime p = 2
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86 Chapter 3. Ramanujan Graphs

presents difficulties because the quaternion algebra H is ramified at 2. Chiu
[Chi] has shown recently that by using the algebra D/Q which is ramified
at 13 and oo (which has class number one) one can make similar explicit
constructions of X2'q. If q is a prime such that ( —) = ( ~ ) —1 then the
Cayley graph of PSL(2, Z/qZ) with generating set

in the case (-) — 1, is cubic Ramanujan. If f - J = —1 then the Cayley

graph of
PGL(2 , Z/qZ) with the same generating set is a cubic bipartite Ramanujan
graph.
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Chapter 4

Bounds for Fourier coefficients
of 1/2—integral weight

In Proposition 1.5.5 we obtained an estimate for the Fourier coefficients of
a cusp form of 1/2 integral weight. Precisely, the bound was

For applications, such as to the Linnik problem of Chapter 1, this bound
falls just short of giving something non-trivial. Our aim in this chapter is to
establish

Theorem 4.1. Let f(z) be a cusp form of half integral weight k for TQ(N)
(here 41 N) then for n square free we have

Remarks 4.2.
(1). The condition that n be square free or some related condition is nec-
essary in view of the example in 1.3.4. In the notes and comments at the
end of this chapter we explain how to extend the estimate of Theorem 4.1 to
all n, as long as / is orthogonal to the theta functions of one variable (with
respect to the Petersson inner product).

(2). Though Theorem 4.1 falls short of the Ramanujan conjecture 1.3.4, it
does break the fc/2 — 1/4 barrier. As such it allows one to solve the Linnik
problem as follows:

From (1.3.11) it follows that if P is a homogeneous harmonic polynomial
in R3 of degree v > 1, then

9P(X)= £
meZ3 n = 1

87
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88 Chapter 4. Bounds for Fourier coefficients

is a cusp form for To (4) of weight 3/2 + v. Hence by Theorem 4.1 we have
for n square free

Now
P(m/\m\) = \m\-"P(m)

so that

|m|2=n

hence

|m|2=n ^l771!/

On the other hand by a theorem of Gaufi1 [Ga]

where h(d) is the class number of Q(\/—n), it;(d) = # of roots of 1 in this
field, and d = discr (Q(V~n))- I n this Linnik problem we are of course
assuming rs(n) > 0, i.e., (f) = 1. Now Siegel [Si2] has shown that h(d) >

€\d\l/2~e (though non-effectively!). Hence for the n's under consideration
we have

r 3 ( n ) > c n 1 / 2 - e . (4.4)

It follows that for any P of degree v > 1

1 / 2 8 . (4.5)
3 W |m|2=n

The harmonic polynomials on S2 form an orthonormal basis and so it follows
immediately that as n —» 00

/ (4.6)

for all continuous functions / , that is to say the points {m\ \m\2 = n} become
equidistributed. The extension of (4.6) to the case of all n (for which rs(n) >
0) is described in the notes at the end of this Chapter.

(3). Using the same theta function methods one can use Theorem 4.1 to
deduce similar equidistribution results for other definite quadratic forms in
three variables.

1This identity may also be derived from the Eisenstein series of weight 3/2.
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(4). For definite forms in more than three variables the equidistribution
follows from the earlier ̂ f2-1/4^ bound. Indeed in these cases the singular
series term is of order n^/2"1.

We turn to the proof of Theorem 4.1. Let k be half an odd integer, k > 5/2
and let 41 N. Let / i , . . . , JR be an orthonormal basis of Sk(To(N)) (with
respect to the Petersson inner product). From (1.5.3) we have

< i W J ) - a , l r o ) ( 4 7 r m ) f c _ 1

where we have written

oo

m = l

Also
R

Hence
R

11 (4-8)

We saw in (1.5.4) that Pm(n) may also be expressed in an infinite series
involving Kloosterman sums. Combining (4.8) and (1.5.4) leads, on setting
n = m, to the fundamental identity

v ' 3=1 c=0(modn) x '

(4.9)
The estimates of |cij(n)| relies on (4.9). Note the positivity of the left hand
side which allows us to vary N when estimating |aj(n)|2. In order to ex-
ploit (4.9) we need to evaluate K(n,n,c) in a form in which we can see
cancellation.

Let K, = 2k, K is odd. We have

Kk(m,n,c)= 2^ ed \l)
d (mod c)

Since Ed depends on d (mod 4), the sum is a little messy as far as the power
of 2 dividing c. In fact a simple use of the Chinese remainder theorem and
quadratic reciprocity yields
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Lemma 4.3. Ifc = qr with (q, r) = 1 and 41 r then

Kk (ra, n, c) = Kk-q+i (m 5, n g, r) S(mf,n r, g)

where for g odd S(ra, n, (/) is the Saiie sum

or \ V fx

S(m,n,q)= }^ (
a;(raod9)

Thus after removing the messy power of 2 part, the Kk is essentially a
Salie sum. The point here is unlike the seemingly simpler Kloosterman sum
K(m, n, c) the Salie sum S(ra, n, q) may be evaluated in elementary terms.
The situation is the finite analog of the Bessel function Jk-i(z) being an
elementary function when k is half an odd integer; for example

J1/2W = \ — sinz.
V 7TZ

(4.10a)

Lemma 4.4. Let (m, q) = (n, q) = 1

(2) S{m,n,q) = (J^-J S(l,mn,q)

(ii) 5(l,m,9) = 0 i

(m) 5(l,n2,g) = eqy/q ^ e f - ^ J

Corollary 4.5. <? odd and (n, g) = 1 then

(o,6)=l

Proof of Corollary 4.5: From Lemma 4.4 we have

It is straightforward that

l(modg) V V 7 b V Vab=q
(a,6)=l
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Proof of Lemma 4.4:

( 0 S ( r o , n , g ) = 2 ^ ( ~ ) e ( " ) •
x(modg) ^q' \ 9 /

Let y = ma;, x = my, x = my, then

5(m,n,g)= ^ ( — 1 e( 1 = ( - J 5(l,mn,g).
x ( m o d g ) ^ ^ / \ 9 / V ̂

: r ^ (x
a J e V —

^ ^ ( mx

x(mod9) XH/ \ ^

UJeV~T"J
x(mod9) X ^ 7 V « /

x(mod9)

= 5(m, l,

Hence 5(1, m, 5) = 0 if ( ^ ) = - 1 .

(in) Now take m = n2, let

*(»)= E UJel~T
x ( m o d q ) V ^ 7 V ^

for n = 0 ,1 , . . . , q — 1. h is a function on the group Z/qZ and we compute
its Fourier transform

h(m)=
n (mod g)

(x(n —xm/2)2 — (xm/2)2x

by the standard evaluation of the Gaufi sum. Hence
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92 Chapter 4. Bounds for Fourier coefficients

The sums

(,,)
x (modg)

were encountered in (1.4.8) and are known as Ramanujan sums. As Ra-
manujan observed these may be evaluated by Mobius inversion [R2]

(4.13)
d\q, d\r

where \x is the Mobius function.
Hence using Fourier inversion we have

q
m (mod 9)

/mn\

V ^ d|9 m(mod9)
m2=4 (modd)

Now assuming, as we are, that (n, q) = 1 we claim that

the inner sum in (4.14) is zero for every d\q, d ^ q. (4.15)

With (4.15) established it follows that

m2=4(modg)

which proves part (in) of Lemma 4.4.

To see (4.15) let q = db with b > 1. For each mo (mode?) a solution of
ra2 = 4 (modd) we have solutions m of ra2 = 4 (modd), m (modg), where
m = rao + Ad, A (mod b). Hence the inner sum breaks up into sums of the
type

E ((mo + \d)n\ /raon\ -̂> /Xn\
e{—db—)=e\-to) ^ e{-Y •

A (mod 6) V 7 A (mod b) X 7

Since (n, b) — 1 this last sum is zero as claimed. •
With this evaluation of K(n,n,c) from Corollary 4.5 and Lemma 4.3 we

can turn to estimating the right hand side of 4.9, in n. The variation of
Jfc_i(47rn/c) is moderate and well understood and not really the issue here.
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Rather it is the variation in the sign of K(n,n,c) that is arithmetic and
must be exploited. Since by Lemma 4.3 K(m, n, c) is essentially S(n, n, q)
the issue is really one of estimating sums of the model problem:

(4.16)
q<x

g=0(mod N)

Model Problem.

We want to develop non-trivial estimates for Kj^(n, x) above by exploiting
cancellation

q<x
9=0(modiV) (a,6)=l

In what follows we make estimates for K^(x) uniformly in the variables x,N,
and n. We assume n is large and square free and is the primary variable,
x, N will be chosen to depend on n (eventually) but for the time being we
consider them to be O(nr) for some fixed large r. Any quantity which is
Oe(x

en€ Ne) for all e > 0 will be denoted C. Thus for example r{n) = #
divisors of n = O(C). The trivial bound for KN(X) is clearly

\KN(x)\<^£ + £. (4.18)

The idea in improving over (4.18) is as follows. In the range where either
a or b is small there is not much gained in cancellation from the exponential
terms in (4.17) but in this case the ( - j term will give cancellation since we
are assuming n is square free! When a and b are both large we will exploit
the cancellation coming from the exponential terms in (4.17). In order to
divide the sum into such ranges we write

*»<»>- £ ( = ) £ • ( » ( h i ) ) - <«9>
y<q<2y x ^ 7 ab=q V V 7 /

g=0 (mod N)

There are at most logx = O(C) such series so we need deal only with one
at a time.

Now

!
y<ab<2y
(a,6)=l
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94 Chapter 4. Bounds for Fourier coefficients

So again dividing into a logarithmic number of series we consider the basic
sum that we need to estimate

F{A,B,N) =
y<

N\ab
A<a<2A
B<b<2B

Incomplete sum.

The dependence of e \2n 11 — M J on a, or on 6, can be made more
transparent by the following very useful reciprocity observed by Iwaniec:

Since clearly aa + bb= I (modafr), we have

For ab large we can then use this to approximately flip a and 6, thus

Now for sums of the type

A<a<2A

we can make non-trivial bounds by completing the sum and using bounds
from algebraic geometry. Precisely, let F(u) be a function on the integers
which is periodic of period m. Then

( d )u<X u<X r (modm)

< L^L^1 + _

r (modm) u<X

\F(r)\
m m ^-^ l — e(r/m)\

r (mod m)

E Im ra ^—' r
l<r<m/2
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F(u) < X | F ( O ) I + IIFIloo logm. (4.24)
m

The above method is known as completing the sum. The term —^-*
clearly corresponds to the sum over a period while we gain in the second
term if ||-F||oo is small.

To apply this consider for example

(4.25)

u (modm)

which is a Kloosterman sum. From the Weil estimate in Chapter 1

\F{r)\ < (i/, m)1/2rn1/2r(m). (4.27)

Hence

E { v u \ r ( m ) X { v , m ) , N l / 9 i / o , X1 /A ^^

el — < -^—K——J- + (m,z/)1/2rn1/2r(m)logm. (4.28)

Hence the sum in (4.23;)

a<A

where we have applied (4.24) and used the Weil bound for the complete sum
of period bn and also the important point that if n is square free

^ \ba\baJ \ b J
a (mod bn)

With these remarks we turn to estimating F(A, B, N) in (4.21).

When A or B is small.

If say B is small we carry out the a sum in (4.21) first and use the method
in the previous Section. Using (4.23) and summation by parts we find for
each fixed b having to estimate

A1<a<A2

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511895593.006
https:/www.cambridge.org/core


96 Chapter 4. Bounds for Fourier coefficients

A\ and Ai are the range of a' = a/(N, b) and m depends on 6. Prom (4.29)
we thus find that

\F(A,B,N)\ ( )

(4.30)

(l + -

On the other hand doing the sum on b first gives

\F(A,B,

The bounds (4.30) and (4.31) are good only if either A or B is small. The
factor n1/2 appears because of the need to exploit the sign changes in (J)
which makes the period of the complete sum, of length nb. When both A and
B are large we forego this cancellation and apply Cauchy-Schwarz. However
a direct attempt does not suffice to give the result. We will overcome this
by one more trick of embedding.

When A and B are large

It is not sufficient to bound F(A, B, N) for fixed N in this case. However
if we average, say

FP= £ \F(A,B,p)\, (4.32)
P<p<2P

where p runs over primes in the range P, 2P we can sum as follows:

2P<p<2P A<ab<2A
B<b<2B
(a,6) = l

y<ab<2y
p\ab

where Ap = sgnF(A, B,p).
Now since p\a or p\b we have

FP(A,B) = F(A/p,B) + F(A,B/p)

and we may estimate these separately. Changing variables

\F(A/p,B)\< Yl E
A/p<a<2A/p B<b<2B Pi<p<P2

ap
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where [Pi,/^] is the appropriate range (its length <C P). So by Cauchy-
Schwarz

(4.33)
Again if say we do the a sum first and use the reciprocity (4.22) we get for
Pi ±Vi

+ =) C (<»-* .»>* + fiazgifiil) . (4.34)

The sum in (4.33) for pi = p<i gives

AB A {ABf
~TPPB = ^ -

while from (4.34) and

£ (P2-Pl.fr) < £

B<b<2B

we have the sum in (4.33) with pi ^ p2 is

Combining (4.34) and (4.35) gives

1 /0

\F(A/P, B)\<£^+(l + - \ C (AWBV'P1'2 + AB1'2). (4.36)

On the other hand doing the b sum first gives

Combining these gives (and doing the same for F(A,B/P))

FP(A,B) « jfa + \l + 1J (j/7/8P3/8 + (A-1'2 + B-1'2)y)C. (4.37)

We note that in order to be effective here we must choose P large (say a
small power of n) and A and B large in view of the (A"1/2 + B~1/2) term.
Notice that in (4.37) we do not have the bad power of n1/2 since we do not
use the sign of (-); we are exploiting the exponential part only!
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98 Chapter 4. Bounds for Fourier coefficients

In fact optimizing in (4.37), (4.30), and (4.31) we divide between the cases

A or B <

when we apply (4.30) or (4.31), else we use (4.37). This gives

J2 \F(A,B,p)\ « pT72 + (1 + - ) (/ /8P3/8 W/V / 4 P 1 / 4 )£ .
P<p<2P ^ ^ '

Returning to (4.17) we get

P<p<2P

1 £. (4.38)

This is the basic bound for the model problem. To deal with the actual sums
involving Kk(m,n,c) viz.

KQ(x)= Yl c-V2K(n,n,c)e(—) , (4.39)
c<x \ C /

c=0 (mod Q)

where v = —1,0,1, one needs to modify the above taking Lemma 4.3 into
account (i.e., factoring out the power of 2 in Lemma 4.3), see Iwaniec [Iwl].
The result one gets in this way is

Proposition 4.6. For n square free and No fixed

P<p<2P

« C [x P"1/2 + x n-1'2 + (z + n ) 5 /V / 4 ^ 3 / 8 +

Proof of Theorem 4.1: The reason the above averaging over the level
in the last estimate can be exploited is the simple but beautiful obser-
vation that if f(z) is our given orthonormal cusp form for TQ(N) then
(l/[ro(N),ro(pN)]1 / 2)/(2) is also such a form for T0(pN). Hence for
each p we can arrange to have the term |a(n)|2/[r0(AO,r0(pAO]) appear
on the left of (4.9), where a(n) is the coefficient to be estimated. Now
[ro(A0, To(pN)\ < p + 1 so summing P < p < 2P gives

nK • E
P<P<2P

E K(m,n,c)

c=0 (modp No)
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Using the evaluation as in (4.10') but for the more general case [Wa],

v 1/2 / / 2 x /

Kz) \ Z X \z) e \z/

where H\ and if_i are polynomials of degree < A:—1/2, for z > 2 and simply
Jk-i(z) = O(zk~1) and J^^z) = O(zk~2) for 0 < z < 2 we can express
the series

. ^ K(n,n,c) /47rn\ _ - ^ ^
Z^ ~c

 k~l \ c ) ~ ̂  2-**
c=0 (modpiVn) c<n C>TI

as integrals against Kp N0 (X) . Plugging in the basic estimate (after integra-
tion by parts) in Proposition 4.6 with P = n1/7 then leads directly to

(see Iwaniec [Iwl]) which proves the Theorem. •

Notice that the case A or B small exploits the sign of (^) since the
solutions to x2 = 1 (modg) are not equidistributed, but for A and B large
we exploit the equidistribution of the solutions to x2 = 1 (modq).

Notes and comments on Chapter 4

(a). The first remark we wish to make concerns the extension of Theorem
4.1 and also the cases of the Linnik conjecture to the general integer n. To
do so we assume that the reader is familiar with the 'Shimura lift' described
in Shimura's paper [Sh]. (Actually there are some difficulties in that paper
in defining the lift because of the Hecke operators Tp2 with p dividing the
level of the form but these may be easily taken care of by the theory of New
Forms [AL].) If / G Sk(Fo(N)), k half integral, and if / is an eigenform of
the Hecke operators Tp2 then Shimura shows that for t square free (as usual
f

n = l

=°(*> n (* - (1
where Xi(m) = (^r) > a nd moreover if

n = l
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100 Chapter 4. Bounds for Fourier coefficients

then

2 K e(nz) ± F(z) € S2k-i(T0(N'))
71=1

for suitable N' (as long as / is orthogonal to the theta functions of one
variable [Sh]). In particular if k > 5/2 this is so.

It follows that

d\n

The coefficients b(n) are those of a modular form of even integral weight
2k — 1 and by the Ramanujan conjectures for these

Hence
fc-l+e

d\n

d\n

Hence applying Theorem 4.1

This gives the extension of Theorem 4.1 to the general integer n.

(b). There is an analog of the Linnik problem for indefinite forms in three
variables. This amounts to investigating the distribution of binary quadratic
forms. Precisely let d < 0 be a discriminant of a binary quadratic form
[a, 6, c] = ax2+bxy+cy2. As was shown by GauB [Ga] these forms split under
the action of 5L(2, Z) (by linear change of variable on (x, y)) into a finite
number h(d) (the class number) of inequivalent forms. We can associate
with each form [a, 6, c] above a point z G H by taking z as the solution of
az2-\-bz + c = 0. Then a set of representatives for the h(d) reduced forms
can be chosen to lie in the fundamental domain T in Figure 1.1. As d —> oo,
the question is that of the distribution of these points in F(1)\H. Linnik was
able to show conditionally that these become equidistributed with respect to
the invariant measure on F(1)\H viz. dxdy/y2. In a beautiful paper Duke
[Du] has proved the result unconditionally. To do so he develops estimates
similar to those of Theorem 4.1 but for the Fourier coefficients of the general
half integral weight Maafi form as defined in A.2.4.
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The estimations in this chapter exploit the analysis of the solutions to
x2 = 1 (mode) with varying c. The analogous question for x2 = m (mode),
where m is not a perfect square has a different behavior but one which is also
closely linked to modular forms. The method of Appendix 2.1 of Chapter 1
applies equally well here and yields

c<X

Now as we have seen from Lemma 4.4 and 4.3 these sums Kk{m,n,c) are
closely related to the sums

(2nx\
\ c /

x2=m (mode)

that is to say 'Weyl sums' for the equidistribution of x2 = m (mode) with
varying c. This should be compared with Hooley [Hoo] and Hejhal [He]. The
more interesting question of the distribution of the roots of x2 = —1 (modp)
for p < X a prime, seems out of the reach of these methods. However very
little is known. For example besides the limit point of zero for x/p where
x2 = — 1 (modp), p —» oo we know of no other limit point in [0,1/2).
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